Normal forms of the degenerate autonomous differential equations with the maximal Jordan chain and simple applications

Бесплатный доступ

Degenerate differential equations, as part of the differential-algebraic equations, the last few decades cause increasing interest among researchers, both because of the attractiveness of the considered theoretical questions, and by virtue of their applications. Currently, advanced methods developed in this area are used for system modelling and analysis of electrical and electronic circuits, chemical reaction simulations, optimization theory and automatic control, and many other areas. In this paper, the theory of normal forms of differential equations, originated in the works of Poincare and recently developed in the works of Arnold and his school, adapted to the simplest case of a degenerate differential equations. For this purpose we are using technique of Jordan chains, which was widely used in various problems of bifurcation theory. We study the normal forms of degenerate differential equations in the case of the existence of the maximal Jordan chain. Two and three dimensional spaces are studied in detail. Normal forms are the simplest representatives of the degenerate differential equations, which are equivalent to more complex ones. Therefore, normal forms should be considered as a model type of degenerate differential equations.

Еще

Degenerate differential equations, normal forms, jordan chains

Короткий адрес: https://sciup.org/147159442

IDR: 147159442   |   DOI: 10.14529/mmp170301

Список литературы Normal forms of the degenerate autonomous differential equations with the maximal Jordan chain and simple applications

  • Вайнберг, М.М. Теория ветвления решений нелинейных уравнений/М.М. Вайнберг, В.А. Треногин. -М.: Наука, 1969.
  • Арнольд, В.И. Геометрические методы в теории обыкновенных дифференциальных уравнений/В.И. Арнольд. -М.: Московский центр непрерывного математического образования, 1999.
  • Ван, Д. Нормальные формы и бифуркации векторных полей на плоскости/Д. Ван, Ч. Ли, Ш.-Н. Чоу. -М.: Московский центр непрерывного математического образования, 2005.
  • Jooss, G. Topics in Bifurcation Theory and Applications/G. Jooss, M. Adelmeyer. -Singapore; New Jersey; London; Hong Kong: World Scientific, 1992.
  • Логинов, Б.В. Нормальные формы вырожденных автономных и неавтономных дифференциальных уравнений с максимальной жордановой цепочкой длины два и три/Б.В. Логинов, Ю.Б. Русак, Л.Р. Ким-Тян//Известия Иркутского государственного университета. Серия: Математика. -2015. -Т. 12. -С. 58-71.
  • Логинов, Б.В. Нормальные формы для вырожденных неавтономных дифференциальных уравнений в пространствах Rn, n=2,3,4/Б.В. Логинов, Ю.Б. Русак, Л.Р. Ким-Тян//Сборник научных трудов Прикладная математика и механика. -Ульяновск: УлГТУ, 2014. -№ 10. -C. 142-160.
  • Loginov, B.V. Differential Equations with Degenerated Variable Operator at the Derivative/B.V. Loginov, Yu.B. Rousak, L.R. Kim-Tyan//Current Trends in Analysis and Its Applications. Proceedings of the 9th ISAAC Congress. -2015. -P. 101-108.
  • Marszalek, W. Fold Points and Singularity Induced Bifurcation in Inviscid Transonic Flow/W. Marszalek//Physics Letters A. -2012. -V. 376, issues 28-29. -P. 2032-2037.
  • Степанов, В.В. Курс дифференциальных уравнений/В.В. Степанов. -М.: Гос. изд-во технико-теоретической литературы, 1950.
Еще
Статья научная