Новые информационные технологии в учебном процессе

Автор: Манухов Владимир Федорович, Тесленок Сергей Адамович

Журнал: Интеграция образования @edumag-mrsu

Рубрика: Академическая интеграция

Статья в выпуске: 1 (58), 2010 года.

Бесплатный доступ

Статья посвящена возможностям использования новых информационных технологий в учебном процессе географического факультета. Показаны методика, содержание и последовательность работ, операции и процессы технологического цикла создания и представления цифровых ландшафтных карт на основе Easy Trace и Arc View GIS, а также средства расширения их базового потенциала.

Геоинформационные системы, гис-технологии, геоинформационное картографирование, ландшафт, ландшафтоведение, ландшафтное картографирование, цифровая ландшафтная карта, модули-расширения, скрипты, новые информационные технологии

Короткий адрес: https://sciup.org/147136624

IDR: 147136624

Текст научной статьи Новые информационные технологии в учебном процессе

В государственные образовательные стандарты и учебные планы по специальностям 020501.65 «Картография», 020401.65 «География», 020804.65 «Геоэкология» с недавнего времени включены новые информационные дисциплины: «Геоинформатика», «Новые информационные технологии», «Новые информационные технологии в учебном процессе», «Геоинформационные системы». Введение в образовательный процесс геоинформационных систем (ГИС) и ГИС-технологий имеет ряд особенностей, одна из которых состоит в том, что они, будучи элементами информатизации общества, представляют собой интегрированные информационные системы, предназначенные для решения различных задач на основе использования пространственно-координированных данных об объектах, процессах и явлениях природы и общества. Значительное влияние на подготовку современного специалиста оказывает внедрение ГИС в науку и производство [1]. Интегрирующий аспект ГИС заключается в исследовании и совместном использовании пространственных отношений между объектами в конкретной области приложений. К числу перспективных направлений применения новых информационных технологий (НИТ) относится формирование интегрированного информационного пространства поддержки междисциплинарных исследований, базирующихся на пространственных данных, а также геоинформационное картографирование на основе новейших методов и технологий. Все это находит отражение в практике учебной и научной работы выпускников географического факультета. При моделировании возможностей решения поставленных задач студенты применяют принципы географической картографии, выбирают необходимые методы и приемы картографирования, используют ГИС, внедряют НИТ в научные исследования [4].

В качестве примера рассмотрим некоторые возможности использования НИТ при создании цифровых ландшафтных карт (ЦЛК) в учебном процессе. Применение геоинформационных технологий в ландшафтных исследованиях становится актуальным по целому ряду причин. Значительные объемы картографических и тематических данных, характеризующих ландшафты и их компоненты с точки зрения географического положения, имеют четко выраженную пространственную привязку. Этим определяется необходимость активного применения современных автоматизированных средств и функций ввода, редактирования, систематизации, согласования, хранения и инвентаризации информации; поиска и управления, оперативного и удобного доступа к ней на основе местоположения; оценки, обработки, анализа, преобразования, моделирования и отображения (включая создание на этой базе разнообразной картографической и графической продукции) [3]; распространения исходных и новых, полученных на их основе данных о тер

риториальном аспекте пространственновременных явлений, т. е. использования технологии ГИС и соответствующего программного обеспечения. ГИС обеспечивают не просто и не только сбор, обработку и хранение информации или выполнение сложных запросов для ее обработки, анализа и получения новых данных. Их главное преимущество — уникальные возможности осуществления мониторинга, моделирования и интерпретации географической действительности, разнообразных явлений, процессов и ситуаций, определения их пространственно-временных связей и взаимодействий. Одно из первостепенных предназначений ГИС-технологий — служить средством обеспечения планирования, принятия решений управленческого характера и прогнозирования возможных последствий предпринимаемых действий.

Многие функции традиционных ландшафтных карт (сбора, оперативного анализа, оценки, систематизации, хранения информации о геосистемах и др.) соответствуют рассмотренным функциям ГИС. Важной особенностью, обусловливающей возможность применения и дальнейшего развития геоинформацион-ных технологий ландшафтоведами, следует признать сочетание традиционных приемов работы с базами данных и преимуществ полноценной визуализации и пространственного анализа с помощью карт [3]. Необходимость применения ГИС-технологий определяется также тем, что ландшафтное картографирование, систематика ландшафтов и физикогеографическое районирование относятся к традиционным видам географического моделирования, без которых невозможно ни одно региональное ландшафтное исследование. С этим самым непосредственным и тесным образом связано пространственное ГИС-моделирование — создание упрощенных представлений географической действительности в виде набора тем (слоев карты) и анализа пространственных взаимосвязей между ними (характеристик различных слоев для каждого конкретного местоположения). Подавляющая часть разработок прикладного характера и экологи ческой направленности, базирующихся на учете региональных особенностей, нуждается в комплексном физико-географическом обосновании. Анализ природных и антропогенных комплексов и региональных ландшафтных структур является главным источником требующихся для этого исходных материалов [5]. Фундаментальное свойство геоин-формационного картографирования и ландшафтоведения — системность — также служит причиной применения ГИС-технологий. Кроме того, геоинфор-мационное картографирование позволяет осуществлять оперативную обработку и анализ значительных объемов информации и в полной мере использовать предоставляемые возможности создания полноцветных визуальных картографических изображений.

С учетом актуальности и практической значимости задачи разработки региональных и специализированных геоин-формационных систем особую важность приобретает подготовка цифровых тематических карт. В качестве исходного материала для создания с помощью ГИС-технологий подобных карт в учебном процессе студентов-картографов по дисциплине «Новые информационные технологии» используется авторский вариант ландшафтной карты Акмолинской области Республики Казахстан. Он представлен на бумажном носителе в масштабе 1:5 00 000 следующей тематической информацией: административная граница, гидрографическая сеть, границы и номера видов ландшафтов, характерные урочища и фации [2].

Преобразование объектов традиционной карты в цифровой формат осуществляется с применением современной сканерной технологии, включающей, как минимум, два этапа: сканирование исходных материалов с коррекцией полученного растрового изображения и его векторизацию (собственно оцифровку) с получением векторных слоев тематической информации. Сшивка отсканированных фрагментов карты производится на основе растровых операций, позволяющих совмещать растры с использованием линейного преобразования (поворот + масштабирование). Весь технологический цикл во избежание его излишнего усложнения выполняется с использованием векторизатора Easy Trace и базовой геоинформационной оболочки ArcView GIS.

Создание цифровой ландшафтной карты и ее последующие представление и использование в среде ГИС предварительно нуждаются в преобразовании к заданной системе координат и картографической проекции. В качестве таковых принимаются условная система метрических плоских прямоугольных (декартовых) координат и проекция Гаусса — Крюгера. Представленная на карте территория, имея значительную протяженность по долготе (465,16 км), целиком не умещается в одну шестиградусную зону, внутри которой координаты в проекции Гаусса — Крюгера изменяются непрерывно. В связи с этим в качестве единой используется система координат 12-й зоны, распространенная на всю картографируемую территорию. Трансформирование в принятую систему координат выполняется на основе сравнения полученных данных с использованием заложенных в векторизаторе аффинного и квадратичного методов. Наилучшие результаты дает коррекция нелинейных искажений функцией «Привязка растра по произвольному набору точек» вторым методом с использованием опорных точек на разных линиях периферии растра. Заключительным этапом трансформации является оценка качества выполненного преобразования с использованием дополнительных (контрольных) точек. Возможности использования разных моделей преобразования координат находят программную реализацию и в специализированных модулях-расширениях и скриптах на языке программирования Avenue ГИС ArcView (например, «Register and Transform Tool», «Projector!», «Shapewarp», «ArcView Projection Utility», «CS_3.0. Коллекция скриптов», «Kow2», «ГИС-КАРТОГРАФ 1», «РАСТР Профи», «Трансформирование» и т. п.), основанных на известных алгоритмах преобразования координат опорных точек из одной системы в другую [6].

Трансформированный и привязанный растр для корректной работы трассировщика инвертируется. Базовая цифровая географическая основа и тематическое содержание ЦЛК создаются с учетом инструкций и требований ГлавНИВЦ МПР России для построения цифровых моделей карт геологического содержания [7]. Основой требований к именам и параметрам полей в атрибутивных таблицах тем (слоев) служит соответствующий классификатор, с изменениями и дополнениями, учитывающими ландшафтную специфику. Для подготовки позиционной части ГИС и формирования цифрового тематического содержания создаются векторные слои и выполняется оцифровка исходной карты на основе технологии сканерной полуавтоматической интерактивной векторизации с автоматической фиксацией координат и параметров объектов во внутреннем формате Easy Trace. Параллельно осуществляется контроль топологической корректности.

В результате были получены 1 растровый и 5 векторных полилинейных слоев (названия и характеристики вариативны), представленные в таблице.

После завершения оцифровки с помощью утилиты «Проверка топологии» производятся топологическая коррекция и согласование слоев дуго-узловой структуры модели векторного материала, позволяющие оценить корректность их построения. Предварительно, исходя из специфики объектов слоев, требований конечной ГИС и формы представления выходного материала, создаются и отрабатываются стратегии верификации топологии (например, «Граница», «Озера», «Реки», «Ландшафты»). Выявленные погрешности исправляются в режиме интерактивного редактирования при отработке протокола ошибок. В случае необходимости данные дорабатываются и корректируются, а для всех векторных объектов проводится идентификация (ат-рибутизация данных).

На следующем этапе полученные слои экспортируются в растр с файлом привязки и каталоги обменного формата DXF AutoCAD. После импорта катало- гов в ГИС и их конвертации в файлы формата SHP строится топология соответствующего вида и вновь осуществляется ее верификация. Проверка топологии в этом случае может быть выполнена на базе модулей-расширений и скриптов («CLU Quality Control extension», «CS_3.0. Коллекция скриптов», «Screen Digitize», «Обработка точек, линий и полигонов» и др.). Для решения ряда сопутствующих задач дополнительно производится конвертация исходных тем с использованием модулей-расширений и скриптов («Vector Conversions Extension»,

«Vector Transformations 1.0», «CS_3.0. Коллекция скриптов», «Обработка точек, линий и полигонов», «Обработка тематических данных», «Utilities For Geological Maps», «Geoprocessing» и др.). Атрибутивные данные ландшафтной тематики включаются в базы данных ГИС посредством присоединения dbf-файлов. Затем для решения практических задач с помощью калькулятора пуля в атрибутивных таблицах всех тем создаются новые поля для расчета значений длин, периметров, площадей и ряда статистических показателей и коэффициентов.

Некоторые сведения о растровом и векторных слоях

Тип слоя

Характеристики слоев

Растровый

Карта сшитая трансформированная привязанная

Размер слоя, pix

Размер растра, Kb

Масштаб растра

Координаты, км

Число цветов

Min

Max

M

x

M

У

X

Y

X

Y

22 778 x

15 933

44 313

1

1

12 394,785 05

5 537,488 95

12 884,288 83

5 879,892 31

2

Векторный

Граница области

Реки, ручьи

Озера, водохранилища

Острова

Виды ландшафтов

Число объектов, шт.

Размер, Kb

Число объектов, шт.

Размер, Kb

Число объектов, шт.

Размер, Kb

Число объектов, шт.

Размер, Kb

Число объектов, шт.

Размер, Kb

1

33,674

1 195

338,720

658

215,178

72

19,240

487

750,418

На завершающем этапе — представления полученной ЦЛК в среде ГИС — производится выбор способов изображения и оформления карт. При этом используются возможности создания полноцветных визуальных картографических изображений заданными цветовыми схемами и условными знаками с применением различных методов классификации и отображения символов легендами различных типов, а также построения компоновок для вывода карт на печать. Процесс компоновки включает создание различных дополнительных графических элементов (рамок, координатной сетки, зарамочного оформления, подписей и т. п.). Поскольку базовые средства

ArcView в этом плане достаточно ограничены, можно вновь прибегнуть к модулям-расширениям и скриптам («Map Tools Sample Extension», «CS_3.0. Коллекция скриптов», «Ram Gaus», «Table Master 3», «Построение сетки», «Color Edit Tool», «Compiled Layout Tools» и др.).

Большое разнообразие природных условий области со значительной территорией (94 832,56 км2) и протяженностью (311,81 км с севера на юг и 465,16 — с запада на восток) лежит в основе формирования сложной ландшафтной структуры (422 выдела 44 видов ландшафтов [2]). Виды с главным диагностическим признаком — сходством доминирующих урочищ [5] — и их границы изображены на ЦЛК контурами соответствующей полигональной темы. Представление об особенностях геосистем дает система визуального изображения ландшафтной дифференциации (масштабные контурные знаки — границы контуров, фоновое обозначение — качественный фон и штриховки; числовые индексы и внемас-штабные знаки). Более полные, подробные и конкретные сведения, как и дополнительные данные, приводятся в атрибутивной таблице темы. Информационные ресурсы ЦЛК представлены в таблице так, что при грамотном использовании редактора легенды имеется возможность получения необходимой производной карты в самые сжатые сроки. Легенды подобных карт разрабатываются в каждом конкретном случае индивидуально, в соответствии с нагрузкой на исходных картографических материалах.

Таким образом, ЦЛК, отражая базовые качества картографируемых геосистем — пространственную структуру (форму) и информацию о них (содержание), — моделирует реальную картину объективной действительности. Подобные карты, будучи начальным этапом создания специализированных региональных ГИС и обладая существенными информационными ресурсами, служат фундаментом для осуществления комплексного физико-географического и отраслевого районирования и создания других разнообразных карт, позволяют уточнить особенности природной и хозяйственной дифференциации региона в условиях интенсивного антропогенного освоения и преобразования.

Применение новых информационных технологий для создания и использования ЦЛК в учебном процессе дает возможность обобщить имеющийся опыт, обосновать, уточнить и отработать методику, операции и процессы технологического цикла создания цифровых карт, содержание и последовательность работ; дополнительно разрабатывать значительное количество производных карт. Таким образом, студенты в процессе учебных занятий и самостоятельной работы знакомятся не только с возможностями использования ГИС-технологий при решении непосредственных практических задач, но и с базовым потенциалом применения наиболее распространенных ГИС и средствами его увеличения на основе расширений и скриптов.

Грамотно сформулированные и методически правильно поставленные задачи по дисциплине «Новые информационные технологии» способствуют сквозному внедрению инновационных технологий в учебный процесс, развитию познавательного интереса у студентов и их ориентации на производство, создают творческую обстановку на занятиях, а в конечном счете оказывают огромное влияние на профессионализм и компетентность будущего молодого специалиста.

СПИСОК

ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУТРЫ

  • 1.    Берлянт, А. М. Картография и геоинформатика в системе наук и учебных дисциплин / А. М. Берлянт // Геодезия и картография. — 2007. — № 1. — С. 38-45.

  • 2.    Ландшафты Акмолинской области [Карты] : карта/ С. А. Тесленок. — 1:500 000. — Петропавловск : Поиск, 1994. — 1к.

  • 3.    Лурье, И. К. Геоинформационное картографирование. Методы геоинформатики и цифровой обработки космических снимков : учеб. / И. К. Лурье. — М. : КДУ, 2008. — 424 с.

  • 4.    Манухов, В. Ф. Проблемно-ориентированный междисциплинарный подход в обучении географов-картографов / В. Ф. Манухов, Н. Г. Ивлиева, В. Н. Пресняков, Е. И. Примаченко // Геодезия и картография. — 2008. — № 11. — С. 61— 64.

  • 5.    Николаев, В. А. Ландшафты азиатских степей / В. А. Николаев. — М. : Изд-во Моск. ун-та, 1999. — 288 с.

  • 6.    Определение координат геодезических пунктов спутниковыми методами : учеб. пособие / В. Ф. Манухов, О. С. Разумов, А. С. Тюряхин, А. К. Коваленко. — Саранск : [б.и.], 2006. — 164 с.

  • 7.    Столпаков, А. В. Временные требования к представлению цифровых моделей топографической основы карт геологического содержания в Государственный банк цифровой геологической информации и информации о недропользовании в России / А. В. Столпаков. — М. : ГУГП «Глав-НИВЦ», 2001. — 55 с.

Поступила 13.04.09.

Статья научная