Новый метод обработки изображений, получаемых при ультразвуковой кардиографии
Автор: Сахба Н., Таваколи В., Ахмадиан А., Аболхасани М., Фотухи М.
Журнал: Техническая акустика @ejta
Статья в выпуске: т.8, 2008 года.
Бесплатный доступ
Информация о движении сердечной мышцы полезна для диагностики заболеваний сердца. Для таких исследований часто применяется двумерная ультразвуковая кардиография (эхокардиография). Изображения, получаемые при эхокардиографии, весьма неотчетливы и трудны для расшифровки; результат диагностики во многом зависит от опыта эксперта. Поэтому прилагаются усилия в направлении улучшения метода. Большинство существующих методов двумерной эхокардиографии подвержены влиянию сдвиговых, поворотных и других видов сложного движения сердца. Для увеличения устойчивости к таким движениям предложен новый алгоритм обработки сигнала, работоспособность и эффективность которого, как показано в статье, выше, чем существующих.
Ультразвуковая кардиография, обработка сигналов, обработка изображений
Короткий адрес: https://sciup.org/14316094
IDR: 14316094
Список литературы Новый метод обработки изображений, получаемых при ультразвуковой кардиографии
- Leitman M. et al. Two-dimensional strain-novel software for real-time quantitative echocardiographic assessment of myocardial function. Journal of the American Society of Echocardiography, 2004, 17(2), 1021-1030.
- Bohs L. N. et al. Speckle tracking for multidimensional flow estimation. Ultrasonics, 2000, 38(2), 369-375.
- Abolhassani M. D., Norouzi A., Takavar A., Ghanaati H. Noninvasive temperature estimation using sonographic digital images. J. Ultrasound Med., 2007, 26(2), 215-222.
- Alvarez L., Weickert J., Sanchez J. Reliable estimation of dense optical flow fields with large displacements. International Journal of Computer Vision, 2000, 39(1), 41-56.
- Aubert G., Deriche R., Kornprobst P. Computing optical flow via variational techniques. SIAM Journal on Applied Mathematics, 1999, 60(1), 156-182.
- Bigun J., Granlund G. H. Optical flow based on the inertia matrix in the frequency domain. In Proc. SSAB Symposium on Picture Processing, Lund, Sweden, 1988, 200-211.
- Lamberti C. et al. Estimation of global parameters for the analysis of left ventricular motion. Presented at Computers in Cardiology, Rotterdam, The Netherlands, 2001, 429-432.
- Bigun J., Granlund G. H., Wiklund J. Multidimensional orientation estimation with applications to texture analysis and optical flow. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(8), 775-790.
- Black M. J., Anandan P. Robust dynamic motion estimation over time. In Proc. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE Computer Society Press: Maui, HI, 1991, 292-302.
- Nagel H.-H. Constraints for the estimation of displacement vector fields from image sequences. In Proc. Eighth International Joint Conference on Artificial Intelligence, vol. 2, Karlsruhe, West Germany, 1983, 945-951.
- Bruhn A., Weickert J., Schnorr C. Combining the advantages of local and global optic flow methods. In Pattern Recognition of LNCS, Springer, 2002, 2444, 454-462.
- Bruhn A., Weikert J, Schnorr C. Lucas-Kanade meets Horn and Schunk: combining local and global optic flow methods. Int. J. Comp. Vis., 2005, 61(3), 211-231.
- Lin N., Papademetris X., Sinusas A. J., Duncan J. S. Analysis of left ventricular motion using a general robust point matching algorithm. In: Medical Image Computing and Computer-Assisted Intervention of LNCS, 2003, 1496, 556-563.
- Weickert J., Schnorr C. A theoretical framework for convex regularizers in PDE-based computation of image motion. International Journal of Computer Vision, 2001, 45(3), 245-264.
- Baraldi P. et al. Evaluation of differential optical flow techniques on Synthesized echo images. IEEE Transactions on Biomedical Engineering, 1996, 43(2), 259-272.
- Lamberti C. et al. Topology of optical flowing 3D echocardiography. Presented at Computers in Cardiology, Lund, Sweden, 1997, 227-230.
- Abolhassani A., Tavakoli V. Noninvasive thermal change detection in renal artery revascularization therapy. Submitted to Journal of Ultrasound in Medicine.
- Suhling M., et al., Myocardial motion analysis from B-mode echocardiograms. IEEE Transaction on Image Processing, 2005, 14, 525-553.
- Unser M. Splines: A perfect fit for signal and image processing. IEEE Signal Process. Mag., 1999, 16(6), 22-38.
- Fleet D.J. and Jepson A.D. Computation of component image velocity from local phase information. International Journal of Computer Vision, 1990, 5(1), 77-104.
- Galvin B., McCane B., Novins K., Mason D., Mills S. Recovering motion fields: An analysis of eight optical flow algorithms. In Proc. 1998 British Machine Vision Conference, Southampton, England, 1998.
- Tavakoli V., Sahba N. et al. An evaluation of different optical flow techniques for myocardial motion analysis. IEEE proceeding on biomedical engineering, Kuala Lumpur, Malaysia, 2008.
- Lucas B., Kanade T. An iterative image registration technique with an application to stereo vision. In Proc. Seventh International Joint Conference on Artificial Intelligence, Vancouver, Canada, 1981, 674-679.
- Tavakoli V., Sahba N. et al. Adaptive multi-resolution myocardial motion analysis of B-Mode echocardiography images using Combined Local/Global optical flow. IEEE proceeding on Bioinformatics and Biomedical Engineering (iCBBE), Shanghai, China, 2008. (In press).
- Bruhn A. Regularization in motion estimation. Master's thesis, Department of Mathematics and Computer Science, University of Mannheim, Germany, 2001.
- Weickert J., Schnorr C. Variational optic flow computation with a spatiotemporal smoothness constraint. Journal of Mathematical Imaging and Vision, 2001, 14(3), 245-255.
- Tavakoli V., Ahmadian A. et al. A new optical flow technique for myocardial motion analysis based on affine concept in space and time. Submitted to IEEE transaction on medical imaging.
- Tavakoli V., Sahba N. et al. An Optimized two-stage method for ultrasound breast image compression. IEEE proceeding on biomedical engineering, Kuala Lumpur, Malaysia, 2008.
- Meunier J. et al. Assessing local myocardial deformation from speckle tracking in echography. SPIE Med. Imag., 1988, 20-29.