Numerical analysis of fractional order integral dynamical models with piecewise continuous kernels
Автор: Tynda A., Sidorov D., Muftahov I.
Рубрика: Математическое моделирование
Статья в выпуске: 4 т.13, 2020 года.
Бесплатный доступ
Volterra integral equations find their application in many areas, including mathematical physics, control theory, mechanics, electrical engineering, and in various industries. In particular, dynamic Volterra models with discontinuous kernels are effectively used in power engineering to determine the operating modes of energy storage devices, as well as to solve the problem of load balancing. This article proposes the numerical scheme for solution of the fractional order linear Volterra integral equations of the first kind with piecewise continuous kernels. The developed approach is based on a polynomial collocation method and effectively approximate such a weakly singular integrals. The efficiency of proposed numerical scheme is illustrated by two examples.
Volterra integral equations, numerical method, convergence, discontinuous kernel, singularity, fractional integral
Короткий адрес: https://sciup.org/147235029
IDR: 147235029 | DOI: 10.14529/mmp200405
Список литературы Numerical analysis of fractional order integral dynamical models with piecewise continuous kernels
- Linz P. Analytical and Numerical Methods for Volterra Equations. Philadelphia, SIAM, 1985. DOI: 10.1137/1.9781611970852
- Sidorov D. Volterra Equations of the First Kind with Discontinuous Kernels in the Theory of Evolving Systems Control. Studia Informatica Universalis, 2011, vol. 9, no. 3, pp. 135-146, arXiv: arxiv.org/abs/1111.5903v1.
- Sidorov D. Integral Dynamical Models: Singularities, Signals and Control. Singapore, London, World Scientific, 2015. DOI: 10.1142/9278
- Atangana A., Bildik N. The Numerical Solution of the Volterra Fractional Integral Equations of the Second Kind. Mathematical Problems in Engineering, 2013, article ID: 981526, 11 p. DOI: 10.1155/2013/981526
- Baleanu D., Diethelm K., Scalas E., Trujillo J.J. Fractional Calculus Models and Numerical Methods. Singapore, World Scientific, 2016. DOI: 10.1142/10044
- Samko S.G., Kilbas A.A., Marichev O.I. Fractional Integrals and Derivatives: Theory and Applications. Yveron, Gordon and Breach, 1993.
- Diethelm K., Ford N.J. Analysis of Fractional Differential Equations. Journal of Mathematical Analysis and Applications, 2002, vol. 265, pp. 229-248. DOI: 10.1006/jmaa.2000.7194
- Diethelm K., Freed A.D. The Frac PECE Subroutine for the Numerical Solution of Differential Equations of Fractional Order. Forschung und wissenschaftliches rechnen, 1998, pp. 57-71.
- Diethelm K. An Algorithm for the Numerical Solution of Differential Equations of Fractional Order. Electronic Transactions on Numerical Analysis, 1997, vol. 5, pp. 1-6.
- Sidorov D.N. On Parametric Families of Solutions of Volterra Integral Equations of the First Kind with Piecewise Smooth Kernel. Differential Equations, 2013, vol. 49, no 2, pp. 210-216. DOI: 10.1134/S0012266113020079
- Sidorov D.N. Solvability of Systems of Volterra Integral Equations of the First Kind with Piecewise Continuous Kernels. Russian Mathematics, 2013, vol. 57, pp. 54-63. DOI: 10.3103/S1066369X13010064
- Sidorov N.A., Sidorov D.N. On the Solvability of a Class of Volterra Operator Equations of the First Kind with Piecewise Continuous Kernels. Mathematical Notes, 2014, vol. 96, pp. 811-826. DOI: 10.4213/mzm10220
- Muftahov I., Tynda A., Sidorov D. Numeric Solution of Volterra Integral Equations of the First Kind with Discontinuous Kernels. Journal of Computational and Applied Mathematics, 2017, vol. 313, pp. 119-128. DOI: 10.1016/j.cam.2016.09.003
- Sidorov D., Tynda A., Muftahov I., Dreglea A., Liu F. Nonlinear Systems of Volterra Equations with Piecewise Smooth Kernels: Numerical Solution and Application for Power Systems Operation. Mathematics, 2020, vol. 8, no. 8, pp. 1257. DOI: 10.3390/math8081257
- Sidorov D., Muftahov I., Tomin, N., Karamov D., Panasetsky D., Dreglea A., Liu F. A Dynamic Analysis of Energy Storage with Renewable and Diesel Generation Using Volterra Equations. IEEE Transactions on Industrial Informatics, 2020, vol. 16, no. 5, article ID: 8784402, pp. 3451-3459. DOI: 10.1109/TII.2019.2932453
- Sidorov D., Panasetsky D., Tomin N., Karamov D., Zhukov A., Muftahov I., Dreglea A., Liu F., Li Y. Toward Zero-Emission Hybrid AC/DC Power Systems with Renewable Energy Sources and Storages: A Case Study from Lake Baikal Region. Energies, 2020, vol. 13, no. 5, pp. 1226. DOI: 10.3390/en13051226
- Sidorov N., Sidorov D., Sinitsyn A. Toward General Theory of Differential-Operator and Kinetic Models. Singapore, London, World Scientific, 2020. DOI: 10.1142/11651
- Sizikov V., Sidorov D. Generalized Quadrature for Solving Singular Integral Equations of Abel Type in Application to Infrared Tomography. Applied Numerical Mathematics, 2016, vol. 106, pp. 69-78. DOI: 10.1016/j.apnum.2016.03.004
- Brunner H., Pedas A., Vainikko G. The Piecewise Polynomial Collocation Method for Nonlinear Weakly Singular Volterra Equation. Mathematics of Computation, 1999, vol. 68, no. 227, pp. 1079-1095. DOI: 10.1090/S0025-5718-99-01073-X