О гено- и геномоцентричности фундаментальных биологических систем: микроорганизмы, растения, животные (обзор)

Автор: Глазко В.И., Косовский Г.Ю., Глазко Т.Т.

Журнал: Сельскохозяйственная биология @agrobiology

Рубрика: Обзоры, проблемы

Статья в выпуске: 3 т.59, 2024 года.

Бесплатный доступ

Развитие геномики и пангеномики становится все более актуальным для разработок новых методов решения традиционных проблем контроля и направленного влияния на изменчивость полигенных количественных признаков для сохранения и усовершенствования генетических ресурсов сельскохозяйственных видов. Для этого необходима систематизация данных об элементах организации генома, о генах и регуляторных геномных последовательностях. С этой целью в настоящей работе рассматривается функциональная «избыточность» генов, кодирующих белки (E.V. Koonin, 2000; G. Rancati с соавт., 2008; M. Isalan с соавт., 2008); видоспецифичность генетических основ адаптации к экологическим факторам даже у видов, близких по происхождению (B. Benjelloun с соавт., 2023); разная скорость эволюции геномных элементов (гены, кодирующие белки и некодирующие последовательности ДНК), вовлекаемых в общие и таксон-специфичные, видоспецифичные биологические процессы (чем выше специфичность, тем выше полиморфизм и эволюционно «моложе» изменчивость, как правило, связанная с давлением факторов окружающей среды) (W. Yang с соавт., 2022; J. Damas с соавт., 2022; M.J. Christmas с соавт., 2023). Обсуждаются мобильные генетические элементы (транспозоны) как центральный источник регуляторных элементов разных уровней организации регуляторных сетей (L.F.K. Kuderna с соавт., 2024), приводятся данные об их вовлеченности в изменчивость различных генов, мутации по которым вовлекаются в селекционную работу с сельскохозяйственными видами (P. Zhao с соавт., 2023; X.M. Zheng с соавт., 2019; R. Xiang с соавт., 2019). Рассматриваются подходы к управлению этими элементами с помощью генного и геномного редактирования с учетом данных как о таких вставках, так и о механизмах, препятствующих негативным эффектам их транскрипции и транспозиций (G. Farmiloe с соавт., 2023). Предполагается, что именно регуляторные элементы и механизмы их контроля могут быть эффективной мишенью для разработок методов управления генетическими ресурсами сельскохозяйственных видов.

Еще

Доместикация, микроэволюция, макроэволюция, биологические коды, регуляторные элементы, транспозоны, профили генной экспрессии, crispr системы

Короткий адрес: https://sciup.org/142242454

IDR: 142242454   |   DOI: 10.15389/agrobiology.2024.3.426rus

Список литературы О гено- и геномоцентричности фундаментальных биологических систем: микроорганизмы, растения, животные (обзор)

  • Bar-On Y.M., Phillips R., Milo R. The biomass distribution on Earth. Proc. Natl. Acad. Sci USA, 2018, 115(25): 6506-6511 (doi: 10.1073/pnas.1711842115).
  • Diamond J. Evolution, consequences and future of plant and animal domestication. Nature, 2002, 418(6898): 700-7007 (doi: 10.1038/nature01019).
  • FAO. Intergovernmental technical working group on animal genetic resources for food and agriculture. Status of animal genetic resources—2016. Ninth Session Rome, 6-8 July 2016. Режим доступа: https://openknowledge.fao.org/server/api/core/bitstreams/c1d6a4cd-b263-4d85-8bc3-ed16630ceb61/content. Без даты.
  • Burgin C.J., Colella J.P., Kahn P.L., Upham N.S. How many species of mammals are there? J. Mammal., 2018, 99: 1-14 (doi: 10.1093/jmammal/gyx147).
  • Zoonomia Consortium. A comparative genomics multitool for scientific discovery and conserva-tion. Nature, 2020, 587: 240-245 (doi: 10.1038/s41586-020-2876-6).
  • Wang W., Mauleon R., Hu Z., Chebotarov D., Tai S., Wu Z., Li M., Zheng T., Fuentes R.R., Zhang F., Mansueto L., Copetti D., Sanciangco M., Palis K.C., Xu J., Sun C., Fu B., Zhang H., Gao Y., Zhao X., Shen F., Cui X., Yu H., Li Z., Chen M., Detras J., Zhou Y., Zhang X., Zhao Y., Kudrna D., Wang C., Li R., Jia B., Lu J., He X., Dong Z., Xu J., Li Y., Wang M., Shi J., Li J., Zhang D., Lee S., Hu W., Poliakov A., Dubchak I., Ulat V.J., Borja F.N., Mendoza J.R., Ali J., Li J., Gao Q., Niu Y., Yue Z., Naredo M.E.B., Talag J., Wang X., Li J., Fang X., Yin Y., Glaszmann J.C., Zhang J., Li J., Hamilton R.S., Wing R.A., Ruan J., Zhang G., Wei C., Alexandrov N., McNally K.L., Li Z., Leung H. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature, 2018, 557(7703): 43-49 (doi: 10.1038/s41586-018-0063-9).
  • Glazko V., Zybailov B., Glazko T. Asking the right question about the genetic basis of domesti-cation: what is the source of genetic diversity of domesticated species? Adv. Genet. Eng., 2015, 4: 2 (doi: 10.4172/2169-0111.1000125).
  • Glazko V., Zybaylov B., Glazko T. Domestication and genome evolution. International Journal of Genetics and Genomics, 2014, 2(4): 47-56 (doi: 10.11648/j.ijgg.20140204.11).
  • Crow M., Suresh H., Lee J., Gillis J. Coexpression reveals conserved gene programs that co-vary with cell type across kingdoms. Nucleic Acids Res., 2022, 50(8): 4302-4314 (doi: 10.1093/nar/gkac276).
  • Wang M., Li W., Fang C., Xu F., Liu Y., Wang Z., Yang R., Zhang M., Liu S., Lu S., Lin T., Tang J., Wang Y., Wang H., Lin H., Zhu B., Chen M., Kong F., Liu B., Zeng D., Jackson S.A., Chu C., Tian Z. Parallel selection on a dormancy gene during domestication of crops from mul-tiple families. Nat. Genet., 2018, 50(10): 1435-1441 (doi: 10.1038/s41588-018-0229-2).
  • Nevo E. Molecular evolutionary genetics of isozymes: pattern, theory, and application. Prog. Clin. Biol. Res., 1990, 344: 701-742.
  • Nevo E. Ecological genomics of natural plant populations: the Israeli perspective. Methods Mol. Biol., 2009, 513: 321-344 (doi: 10.1007/978-1-59745-427-8_17).
  • Cooper B., Clarke J.D., Budworth P., Kreps J., Hutchison D., Park S., Guimil S., Dunn M., Luginbühl P., Ellero C., Goff S.A., Glazebrook J. A network of rice genes associated with stress response and seed development. Proc. Natl. Acad. Sci. USA, 2003, 100(8): 4945-4950 (doi: 10.1073/pnas.0737574100).
  • Glazko V.I., Andreichenko I.N., Kovalchuk S.N., Glazko T.T., Kosovsky G.Yu. Candidate genes for control of cattle milk production traits. Russ. Agricult. Sci., 2016, 42: 458-464 (doi: 10.3103/S1068367416060082).
  • Glazko G., Makarenkov V., Liu J., Mushegian A. Evolutionary history of bacteriophages with double-stranded DNA genomes. Biol. Direct., 2007, 2: 36 (doi: 10.1186/1745-6150-2-36).
  • Rancati G., Pavelka N., Fleharty B., Noll A., Trimble R., Walton K., Perera A., Staehling-Hampton K., Seidel C.W., Li R. Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor. Cell, 2008, 135(5): 879-893 (doi: 10.1016/j.cell.2008.09.039).
  • Isalan M., Lemerle C., Michalodimitrakis K., Horn C., Beltrao P., Raineri E., Garriga-Canut M., Serrano L. Evolvability and hierarchy in rewired bacterial gene networks. Nature, 2008, 452(7189): 840-845 (doi: 10.1038/nature06847).
  • Koonin EV. How many genes can make a cell: the minimal-gene-set concept. Annu. Rev. Genomics Hum. Genet., 2000, 1: 99-116 (doi: 10.1146/annurev.genom.1.1.99).
  • Foster C.S.P., Van Dyke J.U., Thompson M.B., Smith N.M.A., Simpfendorfer C.A., Mur-phy C.R., Whittington C.M. Different genes are recruited during convergent evolution of preg-nancy and the placenta. Mol. Biol. Evol., 2022, 39(4): msac077 (doi: 10.1093/molbev/msac077).
  • Cai G., Zhao W., Zhou Z., Gu X. MATTE: a pipeline of transcriptome module alignment for anti-noise phenotype-gene-related analysis. Brief Bioinform., 2023, 24(4): bbad207 (doi: 10.1093/bib/bbad207).
  • Heng J., Heng H.H. Karyotype coding: the creation and maintenance of system information for complexity and biodiversity. Biosystems, 2021, 208: 104476 (doi: 10.1016/j.biosystems.2021.104476).
  • Heng H.H. Genes and genomes represent different biological entities. In: Genome Chaos. Re-thinking genetics, evolution, and molecular medicine, Chapter 2 /H.H. Heng (ed.). Academic Press, 2019: 53-94 (doi: 10.1016/B978-0-12-813635-5.00002-1).
  • Comaills V., Castellano-Pozo M. Chromosomal instability in genome evolution: from cancer to macroevolution. Biology (Basel), 2023, 12(5): 671 (doi: 10.3390/biology12050671).
  • Heng E., Thanedar S., Heng H.H. Challenges and opportunities for clinical cytogenetics in the 21st century. Genes (Basel), 2023, 14(2): 493 (doi: 10.3390/genes14020493).
  • Schubert I. Macromutations yielding karyotype alterations (and the process(es) behind them) are the favored route of carcinogenesis and speciation. Cancers (Basel), 2024, 16(3): 554 (doi: 10.3390/cancers16030554).
  • Markert C.L. Neoplasia: a disease of cell differentiation. Cancer Res., 1968, 28(9): 1908-1914..
  • Carethers J.M., Jung B.H. Genetics and genetic biomarkers in sporadic colorectal cancer. Gastroenterology, 2015, 149(5): 1177-1190.e3 (doi: 10.1053/j.gastro.2015.06.047).
  • Heng J., Heng H.H. Genome chaos, information creation, and cancer emergence: searching for new frameworks on the 50th Anniversary of the "War on Cancer". Genes (Basel), 2021, 13(1): 101 (doi: 10.3390/genes13010101).
  • Glazko T.T. The independent variability of different karyotypic characteristics during the sponta-neous neoplastic evolution of mouse embryo fibroblasts. Tsitologiia, 1993, 35(1): 36-45.
  • Glazko G.V., Koonin E.V., Rogozin I.B. Mutation hotspots in the p53 gene in tumors of different origin: correlation with evolutionary conservation and signs of positive selection. Biochim Biophys Acta, 2004, 1679(2): 95-106. (doi: 10.1016/j.bbaexp.2004.05.004).
  • Koonin E.V., Rogozin I.B., Glazko G.V. p53 Gain-of-function: tumor biology and bioinformatics come together. Cell Cycle, 2005, 4(5): 686-688 (doi: 10.4161/cc.4.5.1691).
  • Chetverikov S.S. On some moments of the evolutionary process from the point of view of modern genetics. Journal of Experimental Biology, 1926, Ser. A, 2(1): 3-54.
  • Wang Z., Zarlenga D., Martin J., Abubucker S., Mitreva M. Exploring metazoan evolution through dynamic and holistic changes in protein families and domains. BMC Evol. Biol., 2012, 12: 138 (doi: 10.1186/1471-2148-12-138).
  • Yang W., Yu J., Yao Y., Chen S., Zhao B., Liu S., Zhou L., Fang L., Liu J. Comparative immune-relevant transcriptome reveals the evolutionary basis of complex traits. iScience, 2022, 25(12): 105572 (doi: 10.1016/j.isci.2022.105572).
  • Liu S., Yu Y., Zhang S., Cole J.B., Tenesa A., Wang T., McDaneld T.G., Ma L., Liu G.E., Fang L. Epigenomics and genotype-phenotype association analyses reveal conserved genetic archi-tecture of complex traits in cattle and human. BMC Biol., 2020, 18(1): 80 (doi: 10.1186/s12915-020-00792-6).
  • Wang L., Zhou S., Lyu T., Shi L., Dong Y., He S., Zhang H. Comparative genome analysis reveals the genomic basis of semi-aquatic adaptation in American mink (Neovison vison). Animals (Basel), 2022, 12(18): 2385 (doi: 10.3390/ani12182385).
  • Damas J., Corbo M., Kim J., Turner-Maier J., Farré M., Larkin D.M., Ryder O.A., Steiner C., Houck M.L., Hall S., Shiue L., Thomas S., Swale T., Daly M., Korlach J., Uliano-Silva M., Mazzoni C.J., Birren B.W., Genereux D.P., Johnson J., Lindblad-Toh K., Karlsson E.K., Nweeia M.T., Johnson R.N., Zoonomia Consortium, Lewin H.A. Evolution of the ancestral mam-malian karyotype and syntenic regions. Proc. Natl. Acad. Sci. USA, 2022, 119(40): e2209139119 (doi: 10.1073/pnas.2209139119).
  • Christmas M.J., Kaplow I.M., Genereux D.P., Dong M.X., Hughes G.M., Li X., Sullivan P.F., Hindle A.G., Andrews G., Armstrong J.C., Bianchi M., Breit A.M., Diekhans M., Fanter C., Foley N.M., Goodman D.B., Goodman L., Keough K.C., Kirilenko B., Kowalczyk A., Lawless C., Lind A.L., Meadows J.R.S., Moreira L.R., Redlich R.W., Ryan L., Swofford R., Valenzuela A., Wagner F., Wallerman O., Brown A.R., Damas J., Fan K., Gatesy J., Grimshaw J., Johnson J., Kozyrev S.V., Lawler A.J., Marinescu V.D., Morrill K.M., Osmanski A., Paulat N.S., Phan B.N., Reilly S.K., Schäffer D.E., Steiner C., Supple M.A., Wilder A.P., Wirthlin M.E., Xue J.R., Zoonomia Consortium, Birren B.W., Gazal S., Hubley R.M., Koefli K.P., Marques-Bonet T., Meyer W.K., Nweeia M., Sabeti P.C., Shapiro B., Smit A.F.A., Springer M.S., Teeling E.C., Weng Z., Hiller M., Levesque D.L., Lewin H.A., Murphy W.J., Navarro A., Paten B., Pollard K.S., Ray D.A., Ruf I., Ryder O.A., Pfenning A.R., Lindblad-Toh K., Karlsson E.K. Evolutionary constraint and innovation across hundreds of placental mammals. Science, 2023, 380(6643): eabn3943 (doi: 10.1126/science.abn3943).
  • Glazko V.I., Kosovsky G.Yu., Blokhina T.V., Zhirkova A.A., Glazko T.T. Socialization and ge-netic variability as a driver of domestication (by the example of dog breeds). Sel’skokhozyaistvennaya biologiya [Agricultural Biology], 2021, 56(2): 292-303 (doi: 10.15389/agrobiology.2021.2.292eng).
  • Ермакова E.A., Глазко В.И. Синтения генов, ассоциированных c синдромом доместика-ции, у пресмыкающихся, птиц и млекопитающих [Synteny of genes associated with domes-tication syndrome in reptiles, birds and mammals]. Кролиководство и звероводство, 2022, 3: 36-43 (doi: 10.52178/00234885_2022_3_36).
  • Kuderna L.F.K., Ulirsch J.C., Rashid S., Ameen M., Sundaram L., Hickey G., Cox A.J., Gao H., Kumar A., Aguet F., Christmas M.J., Clawson H., Haeussler M., Janiak M.C., Kuhlwilm M., Orkin J.D., Bataillon T., Manu S., Valenzuela A., Bergman J., Rouselle M., Silva F.E. Agueda L., Blanc J., Gut M., de Vries D., Goodhead I., Harris R.A., Raveendran M., Jensen A., Chuma I.S., Horvath J.E., Hvilsom C., Juan D., Frandsen P., Schraiber J.G., de Melo F.R., Bertuol F., Byrne H., Sampaio I., Farias I., Valsecchi J., Messias M., da Silva M.N.F., Trivedi M., Rossi R., Hrbek T., Andriaholinirina N., Rabarivola C.J., Zaramody A., Jolly C.J., Phillips-Conroy J., Wilkerson G., Abee C., Simmons J.H., Fernandez-Duque E., Kanthaswamy S., Shiferaw F., Wu D., Zhou L., Shao Y., Zhang G., Keyyu J.D., Knauf S., Le M.D., Lizano E., Merker S., Navarro A., Nadler T., Khor C.C., Lee J., Tan P., Lim W.K., Kitchener A.C., Zinner D., Gut I., Melin A.D., Guschanski K., Schierup M.H., Beck R.M.D., Karakikes I., Wang K.C., Umapathy G., Roos C., Boubli J.P., Siepel A., Kundaje A., Paten B., Lindblad-Toh K., Rogers J., Marques Bonet T., Farh K.K. Identification of constrained sequence elements across 239 primate genomes. Nature, 2024, 625(7996): 735-742 (doi: 10.1038/s41586-023-06798-8).
  • Benjelloun B., Leempoel K., Boyer F., Stucki S., Streeter I., Orozco-terWengel P., Alberto F.J., Servin B., Biscarini F., Alberti A., Engelen S., Stella A., Colli L., Coissac E., Bruford M.W., Ajmone-Marsan P., Negrini R., Clarke L., Flicek P., Chikhi A., Joost S., Taberlet P., Pompa-non F. Multiple genomic solutions for local adaptation in two closely related species (sheep and goats) facing the same climatic constraints. Molecular Ecology, 2023, 00: e17257 (doi: 10.1111/mec.17257).
  • Frantz L.A.F., Bradley D.G., Larson G., Orlando L. Animal domestication in the era of ancient genomics. Nat. Rev. Genet., 2020, 21(8): 449-460 (doi: 10.1038/s41576-020-0225-0).
  • Hu Y., Yuan S., Du X., Liu J., Zhou W., Wei F. Comparative analysis reveals epigenomic evo-lution related to species traits and genomic imprinting in mammals. Innovation (Camb), 2023, 4(3): 100434 (doi: 10.1016/j.xinn.2023.100434).
  • Zheng X.M., Chen J., Pang H.B., Liu S., Gao Q., Wang J.R., Qiao W.H., Wang H., Liu J., Olsen K.M., Yang Q.W. Genome-wide analyses reveal the role of noncoding variation in complex traits during rice domestication. Sci. Adv., 2019, 5(12): eaax3619 (doi: 10.1126/sciadv.aax3619).
  • Chen S., Liu S., Shi S., Jiang Y., Cao M., Tang Y., Li W., Liu J., Fang L., Yu Y., Zhang S. Comparative epigenomics reveals the impact of ruminant-specific regulatory elements on complex traits. BMC Biol., 2022, 20(1): 273 (doi: 10.1186/s12915-022-01459-0).
  • Kern C., Wang Y., Xu X., Pan Z., Halstead M., Chanthavixay G., Saelao P., Waters S., Xiang R., Chamberlain A., Korf I., Delany M.E., Cheng H.H., Medrano J.F., Van Eenennaam A.L., Tug-gle C.K., Ernst C., Flicek P., Quon G., Ross P., Zhou H. Functional annotations of three do-mestic animal genomes provide vital resources for comparative and agricultural research. Nat. Commun., 2021, 12(1): 1821 (doi: 10.1038/s41467-021-22100-8).
  • Yadav A., Mathan J., Dubey A.K., Singh A. The emerging role of non-coding RNAs (ncRNAs) in plant growth, development, and stress response signaling. Noncoding RNA, 2024, 10(1): 13 (doi: 10.3390/ncrna10010013).
  • Bui Q.T., Grandbastien M.A. LTR retrotransposons as controlling elements of genome response to stress? In: Plant transposable elements: impact on genome structure and function /M.A. Grand-bastien, J. Casacuberta (eds.). Springer Verlag, Berlin, 2012: 273-296 (doi: 10.1007/978-3-642-31842-9_14).
  • Bourque G., Leong B., Vega V.B., Chen X., Lee Y.L., Srinivasan K.G., Chew J.L., Ruan Y., Wei C.L., Ng H.H., Liu E.T. Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res., 2008, 18(11): 1752-1762 (doi: 10.1101/gr.080663.108).
  • Mukherjee K., Moroz L.L. Transposon-derived transcription factors across metazoans. Front. Cell Dev. Biol., 2023, 11: 1113046 (doi: 10.3389/fcell.2023.1113046).
  • Osmanski A.B., Paulat N.S., Korstian J., Grimshaw J.R., Halsey M., Sullivan K.A.M., Moreno-Santillán D.D., Crookshanks C., Roberts J., Garcia C., Johnson M.G., Densmore L.D., Ste-vens R.D., Zoonomia Consortium†, Rosen J., Storer.J.M., Hubley R., Smit A.F.A., Dáva-los L.M., Karlsson E.K., Lindblad-Toh K., Ray D.A. Insights into mammalian TE diversity through the curation of 248 genome assemblies. Science, 2023, 380(6643): eabn1430 (doi: 10.1126/science.abn1430).
  • Fueyo R., Judd J., Feschotte C., Wysocka J. Roles of transposable elements in the regulation of mammalian transcription. Nat. Rev. Mol. Cell Biol., 2022, 23(7): 481-497(doi: 10.1038/s41580-022-00457-y).
  • Gebrie A. Transposable elements as essential elements in the control of gene expression. Mobile DNA, 2023, 14(1): 9 (doi: 10.1186/s13100-023-00297-3).
  • Roces V., Guerrero S., Álvarez A., Pascual J., Meijón M. PlantFUNCO: Integrative functional genomics database reveals clues into duplicates divergence evolution. Mol. Biol. Evol., 2024, 41(3): msae042 (doi: 10.1093/molbev/msae042).
  • Yang L.L., Zhang X.Y., Wang L.Y., Li Y.G., Li X.T., Yang Y., Su Q., Chen N., Zhang Y.L., Li N., Deng C.L., Li S.F., Gao W.J. Lineage-specific amplification and epigenetic regulation of LTR-retrotransposons contribute to the structure, evolution, and function of Fabaceae species. BMC Genomics, 2023, 24(1): 423 (doi: 10.1186/s12864-023-09530-y).
  • Moawad A.S., Wang F., Zheng Y., Chen C., Saleh A.A., Hou J., Song C. Evolution of endogenous retroviruses in the subfamily of Caprinae. Viruses, 2024, 16: 398 (doi: 10.3390/v16030398).
  • Glazko G.V., Koonin E.V., Rogozin I.B., Shabalina S.A. A significant fraction of conserved noncoding DNA in human and mouse consists of predicted matrix attachment regions. Trends Genet., 2003, 19(3): 119-124 (doi: 10.1016/S0168-9525(03)00016-7).
  • Jordan I.K., Rogozin I.B., Glazko G.V., Koonin E.V. Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet., 2003, 19(2): 68-72 (doi: 10.1016/s0168-9525(02)00006-9).
  • Pathak R.U., Phanindhar K., Mishra R.K. Transposable elements as scaffold/matrix attachment regions: shaping organization and functions in genomes. Frontiers in Molecular Biosciences, 2024, 10: 1326933 (doi: 10.3389/fmolb.2023.1326933).
  • Lawson H.A., Liang Y., Wang T. Transposable elements in mammalian chromatin organization. Nat. Rev. Genet., 2023, 24(10): 712-723 (doi: 10.1038/s41576-023-00609-6).
  • Belyayev A. Bursts of transposable elements as an evolutionary driving force. J. Evol. Biol., 2014, 27(12): 2573-2584 (doi: 10.1111/jeb.12513).
  • Li Y., Li C., Xia J., Jin Y. Domestication of transposable elements into microRNA genes in plants. PLoS ONE, 2011, 6(5): e19212 (doi: 10.1371/journal.pone.0019212).
  • Glazko V.I., Kosovskii G.Yu., Glazko T.T. The sources of genome variability as domestication drivers (review). Sel'skokhozyaistvennaya biologiya [Agricultural Biology], 2022, 57(5): 832-851 (doi: 10.15389/agrobiology.2022.5.832eng).
  • Yang L., Feng H. Cross-kingdom regulation by plant-derived miRNAs in mammalian systems. Animal Models and Experimental Medicine, 2023, 6(6): 518-525 (doi: 10.1002/ame2.12358).
  • Li D., Yang J., Yang Y., Liu J., Li H., Li R., Cao C., Shi L., Wu W., He K. A timely review of cross-kingdom regulation of plant-derived microRNAs. Front. Genet., 2021, 12: 613197 (doi: 10.3389/fgene.2021.613197).
  • Colonna Romano N., Fanti L. Transposable elements: major players in shaping genomic and evolutionary patterns. Cells, 2022, 11: 1048 (doi: 10.3390/cells11061048).
  • Lerat E. Recent bioinformatic progress to identify epigenetic changes associated to transposable elements. Front. Genet., 2022, 13: 891194 (doi: 10.3389/fgene.2022.891194).
  • Buckley R.M., Kortschak R.D., Raison J.M., Adelson D.L. Similar evolutionary trajectories for retrotransposon accumulation in mammals, Genome Biology and Evolution, 2017, 9(9): 2336-2353 (doi: 10.1093/gbe/evx179).
  • Gao C., Xiao M., Ren X., Hayward A., Yin J., Wu L., Fu D., Li J. Characterization and func-tional annotation of nested transposable elements in eukaryotic genomes. Genomics, 2012, 100(4): 222-230 (doi: 10.1016/j.ygeno.2012.07.004).
  • Lexa M., Jedlicka P., Vanat I., Cervenansky M., Kejnovsky E. TE-greedy-nester: structure-based detection of LTR retrotransposons and their nesting. Bioinformatics, 2020, 36(20): 4991-4999 (doi: 10.1093/bioinformatics/btaa632).
  • Zhang X., Zhao M., McCarty D.R., Lisch D. Transposable elements employ distinct integration strategies with respect to transcriptional landscapes in eukaryotic genomes. Nucleic Acids Res., 2020, 48(12): 6685-6698 (doi: 10.1093/nar/gkaa370).
  • Wang J., Han G.Z. Genome mining shows that retroviruses are pervasively invading vertebrate genomes. Nat. Commun., 2023, 14(1): 4968 (doi: 10.1038/s41467-023-40732-w).
  • Voss J.D., Goodson M.S., Leon J.C. Phenotype diffusion and one health: a proposed framework for investigating the plurality of obesity epidemics across many species. Zoonoses and Public Health, 2018, 65(3): 279-290 (doi: 10.1111/zph.12445).
  • Smith H.J. An ethical investigation into the microbiome: the intersection of agriculture, genetics, and the obesity epidemic. Gut Microbes, 2020, 12(1): 1760712 (doi: 10.1080/19490976.2020.1760712).
  • Saito S., Hosomichi K., Yamanaka M.P., Mizutani T., Takeshima S.N., Aida Y. Visualization of clonal expansion after massive depletion of cells carrying the bovine leukemia virus (BLV) inte-gration sites during the course of disease progression in a BLV naturally-infected cow: a case report. Retrovirology, 2022, 19(1): 24 (doi: 10.1186/s12977-022-00609-0).
  • Gillet N.A., Gutiérrez G., Rodriguez S.M., de Brogniez A., Renotte N., Alvarez I., Trono K., Willems L. Massive depletion of bovine leukemia virus proviral clones located in genomic tran-scriptionally active sites during primary infection. PLoS Pathogens, 2013, 9(10): e1003687 (doi: 10.1371/journal.ppat.1003687).
  • Davenport K.M., Massa A.T., Bhattarai S., McKay S.D., Mousel M.R., Herndon M.K., White S.N., Cockett N.E., Smith T.P.L., Murdoch B.M. Characterizing genetic regulatory ele-ments in ovine tissues. Front. Genet., 2021, 12: 628849 (doi: 10.3389/fgene.2021.628849).
  • Chadaeva I., Ponomarenko P., Kozhemyakina R., Suslov V., Bogomolov A., Klimova N., Shi-khevich S., Savinkova L., Oshchepkov D., Kolchanov N.A., Markel A., Ponomarenko M. Do-mestication explains two-thirds of differential-gene-expression variance between domestic and wild animals; the remaining one-third reflects intraspecific and interspecific variation. Animals, 2021, 11: 2667 (doi: 10.3390/ani11092667).
  • Son K.H., Aldonza M.B.D., Nam A.R., Lee K.H., Lee J.W., Shin K.J. Kang K., Cho J.Y. Integrative mapping of the dog epigenome: reference annotation for comparative intertissue and cross-species studies. Sci. Adv., 2023, 9(27): eade3399 (doi: 10.1126/sciadv.ade3399).
  • Xiang R., Berg I.V.D., MacLeod I.M., Hayes B.J., Prowse-Wilkins C.P., Wang M., Bolormaa S., Liu Z., Rochfort S.J., Reich C.M., Mason B.A., Vander Jagt C.J., Daetwyler H.D., Lund M.S., Chamberlain A.J., Goddard M.E. Quantifying the contribution of sequence variants with regula-tory and evolutionary significance to 34 bovine complex traits. Proc. Natl. Acad. Sci. USA, 2019, 116(39): 19398-19408 (doi: 10.1073/pnas.1904159116).
  • Kojima S., Koyama S., Ka M., Saito Y., Parrish E.H., Endo M., Takata S., Mizukoshi M., Hikino K., Takeda A., Gelinas A.F., Heaton S.M., Koide R., Kamada A.J., Noguchi M., Hamada M. Biobank Japan Project Consortium. Kamatani Y., Murakawa Y., Ishigaki K., Naka-mura Y., Ito K., Terao C., Momozawa Y., Parrish N.F. Mobile element variation contributes to population-specific genome diversification, gene regulation and disease risk. Nat. Genet., 2023, 55(6): 939-951 (doi: 10.1038/s41588-023-01390-2).
  • Zhao P., Peng C., Fang L., Wang Z., Liu G.E. Taming transposable elements in livestock and poultry: a review of their roles and applications. Genetics, Selection, Evolution, 2023, 55(1): 50 (doi: 10.1186/s12711-023-00821-2).
  • McDowell J.M., Meyers B.C. A transposable element is domesticated for service in the plant immune system. Proc. Natl. Acad. Sci. USA, 2013, 10(37): 14821-14822 (doi: 10.1073/pnas.1314089110).
  • Mengistu A.A., Tenkegna T.A. The role of miRNA in plant-virus interaction: a review. Molecular Biology Reports, 2021, 48(3): 2853-2861 (doi: 10.1007/s11033-021-06290-4).
  • Jiang L., Wang P., Jia H., Wu T., Yuan S., Jiang B., Sun S., Zhang Y., Wang L., Han T. Haplotype analysis of GmSGF14 gene family reveals its roles in photoperiodic flowering and regional adaptation of soybean. Int. J. Mol. Sci., 2023, 24: 9436 (doi: 10.3390/ijms24119436).
  • Kirov I. Toward transgene-free transposon-mediated biological mutagenesis for plant breeding. Int. J. Mol. Sci., 2023, 24(23): 17054 (doi: 10.3390/ijms242317054).
  • Galbraith J.D., Hayward A. The influence of transposable elements on animal colouration. Trends Genet., 2023, 39(8): 624-638 (doi: 10.1016/j.tig.2023.04.005).
  • Gong Y., Li Y., Liu X., Ma Y., Jiang L. A review of the pangenome: how it affects our under-standing of genomic variation, selection and breeding in domestic animals? J. Anim. Sci. Biotechnol., 2023, 14(1): 73 (doi: 10.1186/s40104-023-00860-1).
  • Smith T.P.L., Bickhart D.M., Boichard D., Chamberlain A.J., Djikeng A., Jiang Y., Low W.Y., Pausch H., Demyda-Peyrás S., Prendergast J., Schnabel R.D., Rosen B.D., Bovine Pangenome Consortium. The Bovine Pangenome Consortium: democratizing production and accessibility of genome assemblies for global cattle breeds and other bovine species. Genome Biol., 2023, 24(1): 139 (doi: 10.1186/s13059-023-02975-0).
  • Zhou Y., Yang L., Han X., Han J., Hu Y., Li F., Xia H., Peng L., Boschiero C., Rosen B.D., Bickhart D.M., Zhang S., Guo A., Van Tassell C.P., Smith T.P.L., Yang L., Liu G.E. Assembly of a pangenome for global cattle reveals missing sequences and novel structural variations, provid-ing new insights into their diversity and evolutionary history. Genome Res., 2022, 32(8): 1585-1601 (doi: 10.1101/gr.276550.122).
  • Xia X., Qu K., Wang Y., Sinding M.S., Wang F., Hanif Q., Ahmed Z., Lenstra J.A., Han J., Lei C., Chen N. Global dispersal and adaptive evolution of domestic cattle: a genomic perspec-tive. Stress Biol., 2023, 3(1): 8 (doi: 10.1007/s44154-023-00085-2).
  • Li R., Gong M., Zhang X., Wang F., Liu Z., Zhang L., Yang Q., Xu Y., Xu M., Zhang H., Zhang Y, Dai X, Gao Y, Zhang Z, Fang W, Yang Y, Fu W, Cao C, Yang P, Ghanatsaman ZA, Negari N.J., Nanaei H.A., Yue X., Song Y., Lan X., Deng W., Wang X., Pan C., Xiang R., Ibeagha-Awemu E.M., Heslop-Harrison P.J.S., Rosen B.D., Lenstra J.A., Gan S., Jiang Y. A sheep pangenome reveals the spectrum of structural variations and their effects on tail phenotypes. Genome Res., 2023, 33(3): 463-477 (doi: 10.1101/gr.277372.122).
  • Li Z., Liu X., Wang C., Li Z., Jiang B., Zhang R., Tong L., Qu Y., He S., Chen H., Mao Y., Li Q., Pook T., Wu Y., Zan Y., Zhang H., Li L., Wen K., Chen Y. The pig pangenome provides insights into the roles of coding structural variations in genetic diversity and adaptation. Genome Res., 2023, 33(10): 1833-1847 (doi: 10.1101/gr.277638.122).
  • Nguyen T.V., Vander Jagt C.J., Wang J., Daetwyler H.D., Xiang R., Goddard M.E., Ngu-yen L.T., Ross E.M., Hayes B.J., Chamberlain A.J., MacLeod I.M. In it for the long run: per-spectives on exploiting long-read sequencing in livestock for population scale studies of structural variants. Genetics, Selection, Evolution, 2023, 55(1): 9 (doi: 10.1186/s12711-023-00783-5).
  • Lanciano S., Philippe C., Sarkar A., Pratella D., Domrane C., Doucet A.J., van Essen D., Sac-cani S., Ferry L., Defossez P.A., Cristofari G. Locus-level L1 DNA methylation profiling reveals the epigenetic and transcriptional interplay between L1s and their integration sites. Cell Genomics, 2024, 4(2): 100498 (doi: 10.1016/j.xgen.2024.100498).
  • Workman S., Richardson S.R. Every repeat is unique: exploring the genomic impact of human L1 retrotransposons at locus-specific resolution. Cell Genomics, 2024, 4(2): 100504 (doi: 10.1016/j.xgen.2024.100504).
  • Guo Y., Xue Z., Gong M., Jin S., Wu X., Liu W. CRISPR-TE: a web-based tool to generate single guide RNAs targeting transposable elements. Mobile DNA, 2024, 15(1): 3 (doi: 10.1186/s13100-024-00313-0).
  • Woźniak T., Sura W., Kazimierska M., Kasprzyk M.E., Podralska M., Dzikiewicz-Krawczyk A. TransCRISPR-sgRNA design tool for CRISPR/Cas9 experiments targeting specific sequence mo-tifs. Nucleic Acids Res., 2023, 51(W1): W577-W586 (doi: 10.1093/nar/gkad355).
  • Fröhlich A., Hughes L.S., Middlehurst B., Pfaff A.L., Bubb V.J., Koks S., Quinn J.P. CRISPR deletion of a SINE-VNTR-Alu (SVA_67) retrotransposon demonstrates its ability to differentially modulate gene expression at the MAPT locus. Front Neurol., 2023, 14: 1273036 (doi: 10.3389/fneur.2023.1273036).
  • Ozata D.M., Gainetdinov I., Zoch A., O’Carroll D., Zamore P.D. PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet., 2019, 20(2): 89-108 (doi: 10.1038/s41576-018-0073-3).
  • Meseuren D., Alsibai K.D. Part 1: The PIWI-piRNA pathway is an immune-like surveillance process that controls genome integrity by silencing transposable elements. In: Chromatin and epigenetics /C. Logie, T.A. Knoch (eds.). IntechOpen, Rijeka, 2018 (doi: 10.5772/intechopen.79974).
  • Farmiloe G., van Bree E.J., Robben S.F., Janssen L.J.M., Mol L., Jacobs F.M.J. Structural evolution of gene promoters driven by primate-specific KRAB zinc finger proteins. Genome Biol. Evol., 2023, 15(11): evad184 (doi: 10.1093/gbe/evad184).
  • Zhang Y., He F., Zhang Y., Dai Q., Li Q., Nan J., Miao R., Cheng B. Exploration of the regulatory relationship between KRAB-Zfp clusters and their target transposable elements via a gene editing strategy at the cluster specific linker-associated sequences by CRISPR-Cas9. Mobile DNA, 2022, 13(1): 25 (doi: 10.1186/s13100-022-00279-x).
  • Ilık İ.A., Glažar P., Tse K., Brändl B., Meierhofer D., Müller F.J., Smith Z.D., Aktaş T. Auton-omous transposons tune their sequences to ensure somatic suppression. Nature, 2024, 626(8001): 1116-1124 (doi: 10.1038/s41586-024-07081-0).
  • Глазко В.И., Косовский Г.Ю., Глазко Т.Т., ДНК маркеры и “микросателлитный код” (обзор). Сельскохозяйственная биология [Agricultural Biology], 2023, 58(2): 223-248 (doi: 10.15389/agrobiology.2023.2.223rus).
  • Глазко В.И., Косовский Г.Ю., Глазко Т.Т. Геномные источники разнообразия как драй-веры доместикации (обзор). Сельскохозяйственная биология [Agricultural Biology], 2022, 57(5): 832-851 (doi: 10.15389/agrobiology.2022.5.832rus).
  • Dornburg A., Mallik R., Wang Z., Bernal M.A., Thompson B., Bruford E.A., Nebert DW, Va-siliou V., Yohe L.R., Yoder J.A., Townsend J.P. Placing human gene families into their evolu-tionary context. Hum. Genomics, 2022, 16(1): 56 (doi: 10.1186/s40246-022-00429-5).
  • Golicz A.A., Batley J., Edwards D. Towards plant pangenomics. Plant Biotechnol. J., 2016, 14(4): 1099-1105 (doi: 10.1111/pbi.12499).
  • Dong X., Luo H., Yao J., Guo Q., Yu S., Ruan Y., Li F., Jin W., Meng D. The conservation of allelic DNA methylation and its relationship with imprinting in maize. J. Exp. Bot., 2024, 75(5): 1376-1389 (doi: 10.1093/jxb/erad440).
Еще
Статья обзорная