On the linear connectivity of the regular part of Gakhov set
Автор: Kazantsev Andrei Vitalievich
Журнал: Математическая физика и компьютерное моделирование @mpcm-jvolsu
Рубрика: Математика труды III международной конференции "Геометрический анализ и его приложения"
Статья в выпуске: 6 (37), 2016 года.
Бесплатный доступ
The study of extrema of the inner mapping (conformal) radii of the plane domains has been initiated by G. P´olya and G. Szeg¨o in connection with the isoperimetrical inequalities and by F.D. Gakhov in concern with construction of the correction classes for the exterior boundary value problems. Both traditions have been unified in the works of L.A. Aksent’ev and his successors. These works also were seminal for the systematic accumulation of the uniqueness criteria for the critical points of the conformal radii. The process of such an accumulation has led to the introduction of the Gakhov set. Let be the class of functions holomorphic in the unit disk D = { ∈ ∈ C : | |
Gakhov set, gakhov class, linear connectivity, inner mapping radius, hyperbolic derivative, critical points
Короткий адрес: https://sciup.org/14968874
IDR: 14968874 | DOI: 10.15688/jvolsu1.2016.6.5