On some analogs of Borsuk's problem in the space Qn

Автор: Kupavskii A.B., Ponomarenko E.I., Raigorodskii A.M.

Журнал: Труды Московского физико-технического института @trudy-mipt

Рубрика: Проблема борсука

Статья в выпуске: 1 (13) т.4, 2012 года.

Бесплатный доступ

In 1933, K. Borsuk conjectured that each set of diameter 1 in Rn can be partitioned into n + 1 parts of smaller diameter. This conjecture was disproved in 1993. We consider various generalizations of Borsuk's problem to the cases of sets which lie in the space Qn with the Euclidean metric and general metric lp.

Borsuk's problem, coloring and partitioning, graph of diameters

Короткий адрес: https://sciup.org/142186209

IDR: 142186209

Статья научная