On some analogs of Borsuk's problem in the space Qn
Автор: Kupavskii A.B., Ponomarenko E.I., Raigorodskii A.M.
Журнал: Труды Московского физико-технического института @trudy-mipt
Рубрика: Проблема борсука
Статья в выпуске: 1 (13) т.4, 2012 года.
Бесплатный доступ
In 1933, K. Borsuk conjectured that each set of diameter 1 in Rn can be partitioned into n + 1 parts of smaller diameter. This conjecture was disproved in 1993. We consider various generalizations of Borsuk's problem to the cases of sets which lie in the space Qn with the Euclidean metric and general metric lp.
Borsuk's problem, coloring and partitioning, graph of diameters
Короткий адрес: https://sciup.org/142186209
IDR: 142186209
Статья научная