On projective finite spaces
Автор: Popov Vladimir Valentinovich
Журнал: Математическая физика и компьютерное моделирование @mpcm-jvolsu
Рубрика: Математика
Статья в выпуске: 2 (19), 2013 года.
Бесплатный доступ
A.V. Arhangel’skii [1] defines the notion of projective power of a Tychonoff space. In particular, the space X is projectively finite, if for any open continuous mapping : → onto metrizable separable space the image = 𝑓(𝑋) is a finite set. The following results are obtained in this paper: Теорема 1. There is a projectively finite metrizable space of the weight = 2ℵ0. Теорема 2. For every cardinal number ≥ 2ℵ0 there exists such a projectively finite Tychonoff space 𝑋, that any Tychonoff space of the weight ≤ is embeddable in 𝑋. It follows from theorems 1 and 2 the existance of such a projectively finite space, that contains a non trivial convergent sequence. This is an affirmative answer to one of the question of A.V. Arhangel’skii [1].
Projective finite space, metrizable space, open continuous mapping, connected space, separable space
Короткий адрес: https://sciup.org/14968735
IDR: 14968735