On colorings of a two-dimensional sphere partitioned into regions

Автор: Sinelnikov-Murylev P.S.

Журнал: Труды Московского физико-технического института @trudy-mipt

Рубрика: Математика

Статья в выпуске: 2 (66) т.17, 2025 года.

Бесплатный доступ

In this paper we consider the problem of the chromatic number of the 2-dimensional sphere partitioned into regions, in the setting proposed by C. Thomassen. The focus is on «nice colorings», where regions are simply connected, have a diameter less than one, and any two regions of the same color are at a distance greater than one. An improved lower bound is established for the radius of the sphere beyond which a proper 7-coloring becomes impossible.

Chromatic number, sphere coloring, nice coloring, combinatorics, distance graphs

Короткий адрес: https://sciup.org/142245012

IDR: 142245012

Статья научная