On colorings of a two-dimensional sphere partitioned into regions
Автор: Sinelnikov-Murylev P.S.
Журнал: Труды Московского физико-технического института @trudy-mipt
Рубрика: Математика
Статья в выпуске: 2 (66) т.17, 2025 года.
Бесплатный доступ
In this paper we consider the problem of the chromatic number of the 2-dimensional sphere partitioned into regions, in the setting proposed by C. Thomassen. The focus is on «nice colorings», where regions are simply connected, have a diameter less than one, and any two regions of the same color are at a distance greater than one. An improved lower bound is established for the radius of the sphere beyond which a proper 7-coloring becomes impossible.
Chromatic number, sphere coloring, nice coloring, combinatorics, distance graphs
Короткий адрес: https://sciup.org/142245012
IDR: 142245012