On dividing planar sets into four, five, and six parts without sufficiently small distances
Автор: Voronetskii E. Yu.
Журнал: Труды Московского физико-технического института @trudy-mipt
Рубрика: Проблема борсука
Статья в выпуске: 1 (13) т.4, 2012 года.
Бесплатный доступ
In this paper, we improve the previously known upper bound on a minimum distance, which is absent among the points of each part in a partition of an arbitrary set of diameter 1 on the plane into five parts.
Borsuk's problem, diameter, forbidden distance, universal cover, partition
Короткий адрес: https://sciup.org/142186207
IDR: 142186207
Статья обзорная