On the size and complexity of connectivity components of a random hypergraph
Автор: Koshelev M.M., Shabanov D. A.
Журнал: Труды Московского физико-технического института @trudy-mipt
Рубрика: Математика
Статья в выпуске: 4 (60) т.15, 2023 года.
Бесплатный доступ
The paper deals with finding the limit distributions of sizes and complexities of connectivity components of a random hypergraph in the binomial model Н(n,k,p). We consider the situation «inside the phase transition», when p = p(n) is equal to p = l/(k-1)(n-1) with l = l(n) satisfying the relation (l - 1)n1/3 ~ (k - 1)2/3а for fixed а G R. The main result is the generalization to Н(n,k,p) of the result of D. Aldous (1997) concerning the joint distributions of sizes and complexities of a random graph.
Random hypergraphs, connectivity components, brownian motion, weak convergence
Короткий адрес: https://sciup.org/142239465
IDR: 142239465