Оn the congruence lattices of periodic unary algebras
Автор: Popov Vladimir Valеntinovich
Журнал: Математическая физика и компьютерное моделирование @mpcm-jvolsu
Рубрика: Математика
Статья в выпуске: 2 (21), 2014 года.
Бесплатный доступ
The author describes all commutative unary algebras with finite number of unary operations which have distributive lattice of congruences and cyclic elements in every operation. It proves the following result: Теорема 2. Let A = ???, ??1, ??2,..., ????? is a connected commutative unary algebra, ?? ? 1 and ??1, ??2,..., ???? ? 1 - such a natural numbers, that ?????? ?? (??) = ?? for every ?? ? ?? and every ?? ? ??. Then the following condition are equivalent: (1) The lattice of congruence on A has a distributive property. (2) One can find natural numbers ??1, ??2,..., ???? ? 1 and such an unary operation ? on A, that for every ?? = 1, 2,...,?? and every ?? ? ?? it holds ????(??) = ?????(??).
Unary operation, commutative unary algebra, lattice of congruence, cyclic element, distributive property
Короткий адрес: https://sciup.org/14968957
IDR: 14968957