On the power order of growth of lower Q-homeomorphisms
Автор: Salimov R.R.
Журнал: Владикавказский математический журнал @vmj-ru
Статья в выпуске: 2 т.19, 2017 года.
Бесплатный доступ
In the present paper we investigate the asymptotic behavior of Q-homeomorphisms with respect to a p-modulus at a point. The sufficient conditions on Q under which a mapping has a certain order of growth are obtained. We also give some applications of these results to Orlicz-Sobolev classes W1,φloc Rn, n⩾3, under conditions of the Calderon type on $\varphi$ and, in particular, to Sobolev classes W1,ploc, p>n-1. We give also an example of a homeomorphism demonstrating that the established order of growth is precise.
P-модуль, p-ёмкость, нижние q-гомеоморфизмы
Короткий адрес: https://sciup.org/14318600
IDR: 14318600 | DOI: 10.23671/VNC.2017.2.6507