On asymptotical behavior of the solutions some semilinear elliptical equations on noncompact Riemannian manifolds
Автор: Mazepa Elena Alexeevna
Журнал: Математическая физика и компьютерное моделирование @mpcm-jvolsu
Рубрика: Математика
Статья в выпуске: 1 (14), 2011 года.
Бесплатный доступ
This paper is devoted to studying the asymptotical behavior of the solutions of some semilinear equations on noncompact Riemannian manifolds. We establish some interrelation between validity of the Liouville property for linear elliptical equations with constant positive potential and validity of the Liouville theorem for one semilinear elliptic equation on these manifolds. Also we receive the necessary and sufficient conditions of existence of the nontrivial (positive) bounded entire solutions of the semilinear elliptic equations and solvability of some boundary value problems on the quasi-model Riemannian manifolds.
Semilinear elliptic equation, liouville property, boundary value problem, riemannian manifold, dirichlet problem
Короткий адрес: https://sciup.org/14968670
IDR: 14968670