Об интеграле Помпею и некоторых его обобщениях

Бесплатный доступ

Даны оценки классического интеграла Помпею, рассматриваемого на всей комплексной плоскости с особыми точками и, в семействах различных весовых пространств. Этот интеграл играет ключевую роль в теории обобщенных аналитических функций И.Н. Векуа, которая широко используется при моделировании различных процессов - трансзвуковых течений газа, состояний безмоментного напряженного равновесия выпуклых оболочек и многих других. Более точно, описываются весовые порядки , для которых этот оператор ограничен из весового пространстве функций, суммируемых с -ой степенью, в весовое пространство гельдеровых функций. Аналогичные оценки получены также для более общих интегралов с разностным ядром. Указаны приложения этих результатов к эллиптическим системам первого порядка на плоскости, которые, в частности, включают математические модели плоской теории упругости (система Ламе) в общем анизотропном случае и играют центральную роль в теории обобщенных аналитических функций И.Н. Векуа.

Еще

Интеграл помпею, весовые пространства гельдера и лебега, обобщенные интегралы помпею, интегралы с разностными ядрами, математические модели теории упругости

Короткий адрес: https://sciup.org/147233003

IDR: 147233003   |   DOI: 10.14529/mmp210105

Список литературы Об интеграле Помпею и некоторых его обобщениях

  • Векуа, И.Н. Обобщенные аналитические функции / И.Н. Векуа. - М.: Наука, 1988.
  • Стейн, И. Сингулярные интегралы и дифференциальные свойства функций / И. Стейн. - М.: Мир, 1972.
  • Соболев, С.Л. Некоторые применения функционального анализа в математической физике / С.Л. Соболев. - М.: Наука, 1968.
  • Adams, R.A. Sobolev Spaces / R.A. Adams. - New York: Academic Press, 1975.
  • Берс, Л. Уравнения с частными производными / Л. Берс, Ф. Джон, М. Шехтер. - М.: Мир, 1966.
  • Солдатов, А.П. Сингулярные интегральные операторы и эллиптические краевые задачи / А.П. Солдатов // Современная математика. Фундаментальные направления. - 2017. - Т. 63. - С. 1-189.
  • Кошанов, Б. Краевая задача с нормальными производными для эллиптического уравнения на плоскости / Б. Кошанов, А.П. Солдатов // Дифференциальные уравнения. - 2016. - Т. 52, № 12. - С. 1666-1681.
  • Солдатов, А.П. Задача Римана - Гильберта для эллиптических систем первого порядка на плоскости с постоянными старшими коэффициентами / А.П. Солдатов, О.В. Чернова. - М.: ВИНИТИ РАН, 2018.
Статья научная