Об эффективности применения лейкоцитарных индексов в диагностике иммунных нарушений у спортсменов (обзор литературы)

Автор: Трушина Э.Н., Мустафина О.К.

Журнал: Человек. Спорт. Медицина @hsm-susu

Рубрика: Физиология

Статья в выпуске: 4 т.23, 2023 года.

Бесплатный доступ

Цель: проанализировать результаты исследований по характеристике лейкоцитарных индексов, используемых в спортивной медицине, и оценить их значимость в качестве маркеров нарушения иммунного статуса и перетренированности у спортсменов.

Лейкоцитарные индексы, клеточный иммунитет, спортсмены

Короткий адрес: https://sciup.org/147242707

IDR: 147242707   |   DOI: 10.14529/hsm230405

Список литературы Об эффективности применения лейкоцитарных индексов в диагностике иммунных нарушений у спортсменов (обзор литературы)

  • Иванов, Д.О., Шабалов Н.П., Шабалова Н.Н. Лейкоцитарные индексы клеточной реактивности как показатель наличия гипо- и гиперэргического вариантов неонатального сепсиса // Новости Фармакотерапии. 2005. № 3. С. 62–69. [Ivanov D.O., Shabalov N.P., Shabalova N.N. [Leukocyte Indices of Cellular Reactivity as an Indicator of the Presence of Hypo- and Hyperergic Variants of Neonatal Sepsis]. Novosty Farmacotherapii [News of Pharmacotherapy], 2005, no. 3, pp. 62–69. (in Russ.)]
  • Сакович А.Р. Гематологические лейкоцитарные индексы при остром гнойном синусите // Мед. журнал. 2012. Т. 42, № 4. С. 88–91. [Sakovich A.R. [Hematological Leukocyte Indices in Acute Purulent Sinusitis]. Meditsinski zhurnal [Medical Journal], 2012, vol. 42, no. 4, pp. 88–91. (in Russ.)]
  • Сакович А.Р., Перминов А.Б. Гематологические лейкоцитарные индексы при лорпатологии // Мед. журнал. 2014. № 2. С. 29–30. [Sakovich A.R., Perminov A.B. [Hematological Leukocyte Indices in ENT Pathology]. Meditsinski zhurnal [Medical Journal], 2014, no. 2, pp. 29–30. (in Russ.)]
  • Трищенкова С.Н. Интегральные гематологические показатели у спортсменов с хронической патологией глотки // Рос. оториноларингология. 2012. Т. 56, № 1. С. 166–168. [Trishchenkova S.N. [Integral Hematological Parameters in Athletes with Chronic Pathology of the Pharynx]. Rossiyskaya otorinolaringologiya [Russian Otorhinolaryngology], 2012, vol. 56 (1), pp. 166–168. (in Russ.)]
  • Трищенкова С.Н., Екимовских А.В., Егоров Г.Е. Интегральные гематологические показатели у спортсменов // Материалы I Всерос. конгресса «Медицина для спорта», 19–20 сент. 2011 г. – С. 36–38. [Trishchenkova S.N., Ekimovskikh A.V., Egorov G.E. [Integral Hematolog-ical Parameters in Athletes]. Materialy I Vserossiyskogo kongressa “Meditsina dlya sporta” [Materials of the I All-Russian Congress Medicine for Sports], 2011, pp. 36–38. (in Russ.)]
  • Podgórski T., Kryściak J., Pluta B. et al. A Practical Approach to Monitoring Biomarkers of Inflammation and Muscle Damage in Youth Soccer Players During a 6-Month Training Cycle. Journal Human Kinet., 2021, vol. 80, pp. 185–197. DOI: 10.2478/hukin-2021-0093
  • Campbell J.P., Riddell N.E., Burns V.E. et al. Acute Exercise Mobilises CD8+ T Lympho-cytes Exhibiting an Effector-Memory Phenotype. Brain, Behavior, and Immunity, 2009, vol. 23 (6), pp. 767–775. DOI: 10.1016/j.bbi.2009.02.011
  • Shinkai S., Shore S., Shek P.N., Shephard R.J. Acute Exercise and Immune Function. Relationship between Lymphocyte Activity and Changes in Subset Counts. International Journal of Sports Medicine, 1992, vol. 13 (6), pp. 452–461. DOI: 10.1055/s-2007-1021297
  • Wahl P., Mathes S., Bloch W., Zimmer P. Acute Impact of Recovery on the Restoration of Cellular Immunological Homeostasis. International Journal of Sports Medicine, 2020, vol. 41, pp. 12–20. DOI: 10.1055/a-1015-0453
  • Graff R.M., Kunz H.E. Agha/β 2-Adrenergic Receptor Signaling Mediates the Preferential Mobilization of Differentiated Subsets of CD8+ T-cells, NK-cells and Non-classical Monocytes in Response to Acute Exercise in Humans. Brain, Behavior, and Immunity, 2018, vol. 74, pp. 143–153. DOI: 10.1016/j.bbi.2018.08.017
  • Kruger K., Alack K., Ringseis R. et al. Apoptosis of T-cell Subsets After Acute High-Intensity Interval Exercise. Medicine & Science in Sports & Exercise, 2016, vol. 48 (10), pp. 2021–2029. DOI: 10.1249/MSS.0000000000000979
  • Joisten N., Walzik D., Schenk A. et al. Aqua Cycling for Immunological Recovery After Intensive, Eccentric Exercise. European Journal of Applied Physiology, 2019, vol. 119 (6), pp. 1369–1375. DOI: 10.1007/s00421-019-04127-4
  • Cadegiani F.A., Kater C.E. Novel Causes and Consequences of Overtraining Syndrome: the EROS-DISRUPTORS Study. BMC Sports Science Medicine Rehabilitation, 2019, vol. 11, p. 21. DOI: 10.1186/s13102-019-0132-x
  • Campbell J.P., Turner J.E. Debunking the Myth of Exercise-induced Immune Suppression: Redefining the Impact of Exercise on Immunological Health Across the Lifespan. Frontiers in Immunology, 2018, vol. 9 (648), pp. 1–21. DOI: 10.3389/fimmu.2018.00648
  • Simpson R.J., Campbell J.P., Gleeson M. et al. Can Exercise Affect Immune Function to Increase Susceptibility to Infection? Exercise Immunology Review, 2020, vol. 26, pp. 8–22.
  • Schlagheck M.L., Walzik D., Joisten N. et al. Cellular Immune Response to Acute Exercise: Comparison of Endurance and Resistance Exercise. European Journal of Haematology, 2020, vol. 105 (1), pp. 75–84. DOI: 10.1111/ejh.13412
  • Romagnoli M., Sanchis-Gomar F., Alis R Risso-Ballester J. et al. Changes in Muscle Damage, Inflammation, and Fatigue-Related Parameters in Young Elite Soccer Players after a Match. Journal Sports Medicine Physical Fitness, 2016, vol. 56 (10), pp. 1198–1205.
  • Farjallah M.A., Ghattassi K., Ben Mahmoud L. et al. Effect of Nocturnal Melatonin Intake on Cellular Damage and Recovery from Repeated Sprint Performance During an Intensive Training Schedule. Chronobiology International, 2020, vol. 37, pp. 686−698. DOI: 10.1080/07420528.2020.1746797
  • Simpson R.J., Kunz H., Agha N., Graff R. Exercise and the Regulation of Immune Functions. Progress in Molecular Biology and Translational Science, 2015, vol. 135, pp. 355–380. DOI: 10.1016/bs.pmbts.2015.08.001
  • Turner J.E., Spielmann G., Wadley A.J. et al. Exercise-induced B Cell Mobilisation: Preliminary Evidence for an Influx of Immature Cells into the Bloodstream. Physiology & Behavior, 2016, vol. 164, pp. 376–382. DOI: 10.1016/j.physbeh.2016.06.023
  • Goh J., Behringer M. Exercise Alarms the Immune System: A HMGB1 Perspective. Cytokine, 2018, vol. 110, pp. 222–225. DOI: 10.1016/j.cyto.2018.06.031
  • Goh J., Lim C.L., Suzuki K. Effects of Endurance-, Strength-, and Concurrent Training on Cytokines and Inflammation. Schumann M., Rønnestad B.R., editors. Concurrent Aerobic and Strength Training. Springer; Basel, Switzerland, 2019, pp. 125–138. DOI: 10.1007/978-3-319-75547-2_9
  • Anđelković M., Baralić I., Đorđević B. et al. Hematological and Biochemical Parameters in Elite Soccer Players During a Competitive Half Season. Journal Medicine Biochemistry, 2015, vol. 34 (4), pp. 460–466. DOI: 10.2478/jomb-2014-0057
  • Cerqueira É., Marinho D.A., Neiva H.P., Lourenço O. Inflammatory Effects of High and Moderate Intensity Exercise – A Systematic Review. Frontiers in Physiology, 2020, vol. 10, p. 1550. DOI: 10.3389/fphys.2019.01550
  • Pedersen B.K., llum H. NK Cell Response to Physical Activity: Possible Mechanisms of Action. Medicine & Science in Sports & Exercise, 1994, vol. 26 (2), pp. 140–146. DOI: 10.1249/00005768-199402000-00003
  • Kurowski M., Seys S., Bonini M. et al. Physical Exercise, Immune Response, and Susceptibility to Infections-current Knowledge and Growing Research Areas. Allergy, 2022, vol. 77 (9), pp. 2653–2664. DOI: 10.1111/all.15328
  • Peake J.M., Neubauer O., Walsh N.P., Simpson R.J. Recovery of the Immune System After Exercise. Journal of Applied Physiology, 2017, vol. 122 (5), pp. 1077–1087. DOI: 10.1152/ japplphysiol.00622.2016
  • Becatti M., Mannucci A., Barygina V. et al. Redox Status Alterations During the Competitive Season in Élite Soccer Players: focus on Peripheral Leukocyte-Derived ROS. International Emergency Medicine, 2017, vol. 12 (6), pp. 777–788. DOI: 10.1007/s11739-017-1653-5
  • Shephard R.J. Adhesion Molecules, Catecholamines and Leucocyte Redistribution During and Following Exercise. American Journal of Sports Medicine, 2003, vol. 33 (4), pp. 261–284. DOI: 10.2165/00007256-200333040-00002
  • Shek P.N., Sabiston B.N., Buguet A., Radomski M.W. Strenuous Exercise and Immunological Changes: a Multiple-time-point Analysis of Leukocyte Subsets, CD4/CD8 Ratio, Immuno-globulin Production and NK Cell Response. International Journal of Sports Medicine, 1995, vol. 16 (7), pp. 466–474. DOI: 10.1055/s-2007-973039
  • Suzuki K., Hayashida H. Effect of Exercise Intensity on Cell-Mediated Immunity. Sports (Basel), 2021, vol. 9 (1), p. 8. DOI: 10.3390/sports9010008
  • Kakanis M.W., Peake J., Brenu E.W. et al. The Open Window of Susceptibility to Infection After Acute Exercise in Healthy Young Male Elite Athletes. Exercise Immunology Review, 2010, vol. 16, pp. 119–137.
  • Walzik D., Joisten N., Zacher J., Zimmer P. Transferring Clinically Established Immune Inflammation Markers into Exercise Physiology: Focus on Neutrophil-to-lymphocyte Ratio, Plate-let-to-lymphocyte Ratio and Systemic Immune-inflammation Index. European Journal of Applied Physiology, 2021, vol. 121 (7), pp. 1803–1814. DOI: 10.1007/s00421-021-04668-7
  • Clifford T., Wood M.J., Stocks P. et al. T-regulatory Cells Exhibit a Biphasic Response to Prolonged Endurance Exercise in Humans. European Journal of Applied Physiology, 2017, vol. 117 (8), pp. 1727–1737. DOI: 10.1007/s00421-017-3667-0
  • Yang D., Han Z., Oppenheim J.J. Alarmins and Immunity. Immunological Reviews, 2017, vol. 280, pp. 41–56. DOI: 10.1111/imr.12577
Еще
Статья обзорная