On ergodic properties of homogeneous Markov chains

Автор: Golovneva Elena V.

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 1 т.14, 2012 года.

Бесплатный доступ

In this paper we continue our investigations initiated in [1]. Namely, we study the spectrum of Kolmogorov matrices with at least one column separated from zero. It is shown that λ=0 is an eigenvalue with multiplicity 1, while the rest of the spectrum is separated from zero. Therefore, a Markov process generated by such a matrix converges to its uniquely defined final distribution exponentially fast. We give an explicit estimate for the rate of this convergence.

Markov processes, generator, spectrum of a matrix, final projector

Короткий адрес: https://sciup.org/14318369

IDR: 14318369

Статья научная