On ergodic properties of homogeneous Markov chains
Автор: Golovneva Elena V.
Журнал: Владикавказский математический журнал @vmj-ru
Статья в выпуске: 1 т.14, 2012 года.
Бесплатный доступ
In this paper we continue our investigations initiated in [1]. Namely, we study the spectrum of Kolmogorov matrices with at least one column separated from zero. It is shown that λ=0 is an eigenvalue with multiplicity 1, while the rest of the spectrum is separated from zero. Therefore, a Markov process generated by such a matrix converges to its uniquely defined final distribution exponentially fast. We give an explicit estimate for the rate of this convergence.
Markov processes, generator, spectrum of a matrix, final projector
Короткий адрес: https://sciup.org/14318369
IDR: 14318369