Об одной краевой задаче для эллиптического уравнения высокого порядка в многосвязной области на плоскости

Автор: Солдатов Александр Павлович

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 3 т.19, 2017 года.

Бесплатный доступ

Для эллиптического уравнения 2l порядка, старшие коэффициенты которого постоянны, в многосвязной области с гладкой границней на плоскости рассмотрена краевая задача с нормальными производными (k_j-1)- порядка, j = 1,...,l, где 1

Эллиптическое уравнение, краевая задача, нормальные производные, многосвязная область, гладкий контур, фредгольмовость, формула индекса

Короткий адрес: https://sciup.org/14318602

IDR: 14318602   |   DOI: 10.23671/VNC.2017.3.7130

Список литературы Об одной краевой задаче для эллиптического уравнения высокого порядка в многосвязной области на плоскости

  • Бицадзе А. В. К задаче Неймана для гармонических функций//Докл. АН СССР. 1990. Т. 311, № 1. C. 11-13.
  • Малахова Н. А., Солдатов А. П. Об одной краевой задаче для эллиптического уравнения высокого порядка//Диф. уравнения. 2008. Т. 44, № 8. С. 1077-1083.
  • Кошанов Б., Солдатов А. П. Краевая задача с нормальными производными для эллиптического уравнения на плоскости//Диф. уравнения. 2016. Т. 52, № 12. С. 1666-1681.
  • Ващенко О. В., Солдатов А. П. Интегральное представление решений обобщенной системы Бельтрами//Науч. ведомости Белгород. гос. ун-та. Сер. Информатика и прикладная математика. 2006. Вып. 6, № 1\,(21). С. 3-6.
  • Солдатов А. П. Сингулярные интегральные операторы и эллиптические краевые задачи//Современная математика фундаментальные направления. 2016. Т. 63. С. 1-179.
  • Soldatov A. P. Hyperanalytic functions and their applications//J. Math. Sci. 2004. Vol. 17. P. 1-111.
  • Абаполова Е. А., Солдатов А. П. К теории сингулярных интегральных уравнений на гладком контуре//Науч. ведомости Белгород. гос. ун-та. 2010. Т. 5(76), вып. 18. С. 6-20.
  • Мусхелишвили Н. И. Сингулярные интегральные уравнения. М.: Наука, 1968. 512 с.
  • Солдатов А. П. Метод теории функций в краевых задачах на плоскости. I. Гладкий случай // Изв. АH СССР. Cеp. Математика. 1991. T. 55, № 5. C. 1070-1100.
  • Солдатов А. П. Задача Шварца для функций, аналитических по Дуглису//Современная математика и ее приложения. 2010. № 67. C. 99-102.
  • Пале Р. Семинар по теореме Атьи Зингера об индексе. М.: Мир, 1970.
Еще
Статья научная