On one control problem of a variable structure with fractional Caputo derivatives
Автор: Ahmedova Zh.B.
Журнал: Вестник Пермского университета. Серия: Математика. Механика. Информатика @vestnik-psu-mmi
Рубрика: Математика
Статья в выпуске: 2 (65), 2024 года.
Бесплатный доступ
We consider an optimal control problem with a variable structure, described in different time intervals by various ordinary nonlinear fractional differential equations. Using an analogue of the incremental method, a necessary condition for first-order optimality is proved. In the case of convex control domains, a linearized maximum condition is proved, and in the case of open control domains, an analogue of the Euler equation is obtained.
Optimal control problem, quality functionality, hamilton-pontryagin function, analogue of the maximum principle of l.s. pontryagin, necessary condition for optimality, admissible control, linearized maximum condition, analogue of euler's equation
Короткий адрес: https://sciup.org/147246645
IDR: 147246645 | DOI: 10.17072/1993-0550-2024-2-5-16