A shock capturing method
Бесплатный доступ
Strong discontinuities, or shocks in continua are a result of external dynamic loads. On the shock surface the conservation laws take the form of nonlinear algebraic equations for jumps across the shock. Entropy jumps across a strong discontinuity, and just this jump differs shocks from waves where the quantities vary continuously. In the heterogeneous difference schemes, the shock is treated as a layer of a finite thickness comparable with the cell size. This property of finite-difference schemes was called distraction. Since the state behind a shock is related to the state before it by the Hugoniot, in the distraction region there must act a mechanism that increases entropy. The physical viscosity and heat conductivity in continuum mechanics equations do not make it unnecessary to introduce a shock surface and hence cannot make the distraction length comparable with a few cells of the difference mesh. The paper considers a number of finite difference schemes where energy dissipation in the distraction region is defined by equations which are valid on the shock surface.
Shock wave, differential method, distraction, energy dissipation, conservation laws
Короткий адрес: https://sciup.org/147159254
IDR: 147159254 | DOI: 10.14529/mmp140106