Обобщение метода Петрова-Галеркина для решения системы интегральных уравнений Фредгольма второго рода
Автор: Волосова Н.К., Волосов К.А., Волосова А.К., Карлов М.И., Пастухов Д.Ф., Пастухов Ю.Ф.
Журнал: Вестник Пермского университета. Серия: Математика. Механика. Информатика @vestnik-psu-mmi
Рубрика: Математика
Статья в выпуске: 1 (60), 2023 года.
Бесплатный доступ
Рассматривается задача численного решения линейной системы m интегральных уравнений Фредгольма второго рода. Впервые предложено обобщение проекционного метода Петрова-Галеркина для решения данной задачи. Количество координатных функций n двух линейно независимых систем может быть равно, больше или меньше m - количества интегральных уравнений. Преимущество данного алгоритма заключается в том, что он не чувствителен к малости параметров λ в системе интегральных уравнений. Алгоритм требует правильного выбора двух линейно независимых систем координатных функций и их числа. Определена диагональная и антидиагональная задача. Для антидиагональной задачи из двух уравнений Фредгольма алгоритм решения сведен к матричному решению. Решены два примера для антидиагональной задачи из двух уравнений Фредгольма, в которых численные решения задачи совпадают с точными решениями системы. Доказаны две теоремы для достаточных условий корректности предложенных численных алгоритмов в двух случаях. В первом случае рассматривается антидиагональная задача с двумя уравнениями Фредгольма второго рода. Вторая теорема рассматривает условия корректности для диагональной задачи общего вида. Несомненно, предложенный алгоритм будет полезен в задачах механики и вычислительной математики.
Уравнение фредгольма, численные методы, уравнения математической физики, матрица, интегральные уравнения
Короткий адрес: https://sciup.org/147245543
IDR: 147245543 | DOI: 10.17072/1993-0550-2023-1-5-14
Список литературы Обобщение метода Петрова-Галеркина для решения системы интегральных уравнений Фредгольма второго рода
- Бахвалов Н.С., Лапин А.В., Чижонков Е.В. Численные методы в задачах и упражнениях: учеб. пособие. М.: БИНОМ. Лаборатория знаний, 2010. 240 с. EDN: RBARWH
- Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. 7-е изд. М.: БИНОМ. Лаборатория знаний, 2011. 636 с. EDN: QJXMXL
- Бахвалов Н.С. Численные методы в задачах и упражнениях / Н.С. Бахвалов, А.В. Лапин, Е.В. Чижонков. М.: БИНОМ. Лаборатория знаний, 2013. 240 с. ISBN: 978-5-9963-2266-4 EDN: SDSYYH
- Васильева А.Б. Интегральные уравнения: учебник / А.Б. Васильева, Н.А. Тихонов; А.Б. Васильева, Н.А. Тихонов. Изд. 3-е, стер. СПб. [и др.]: Лань, 2009. 159 с. ISBN: 978-5-8114-0911-2 EDN: QJVHSN
- Полянский И.С., Логинов К.О. Приближенный метод решения задачи конформного отображения произвольного многоугольника на единичный круг // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки. 2022. Т. 32, № 1. С. 107-129. DOI: 10.35634/vm220108 EDN: CSWSKW
- Юденков А.В., Володченков А.М. Устойчи-вость математических моделей основных задач анизотропной теории упругости // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки. 2020. Т. 30, № 1. С. 112-124. DOI: 10.35634/vm200108 EDN: VUWJTO
- Волосова Н.К., Волосов К.А., Волосова А.К. [и др.] Решение интегральных уравнений Фредгольма методом замены интеграла квадратурой с двенадцатым порядком погрешности в матричном виде // Вестник Пермского университета. Математика. Механика. Информатика. 2022. Вып. 4(59). С. 9-17. DOI: 10.17072/1993-0550-2022-4-9-17 EDN: QZAGPN
- Ильюшин А.А. Труды. Теория термовязко-упругости. Т. 3. М.: ФИЗМАТЛИТ, 2007. 288 с.
- Волосов К.А. Конструкция решений квази-линейных уравнений с частными производными // Сибирский журнал индустриальной математики. 2008. Т. 11, № 2(34). С. 29-39. EDN: IUDSGT
- Кумыкова С.К., Эржибова Ф.А., Гучаева З.Х. Задача типа задачи Бицадзе-Самарского для уравнения смешанного типа // Современные наукоемкие технологии. 2016. № 9-1. С. 73-78. EDN: WHVYVT