Обзор и тестирование детекторов фронтальных лиц

Автор: Калиновский Илья Андреевич, Спицын Владимир Григорьевич

Журнал: Компьютерная оптика @computer-optics

Рубрика: Обработка изображений: Восстановление изображений, выявление признаков, распознавание образов

Статья в выпуске: 1 т.40, 2016 года.

Бесплатный доступ

Статья посвящена сравнению разработанного авторами способа обнаружения лиц, основанного на каскаде компактных свёрточных нейронных сетей, с современными детекторами фронтальных лиц. Приведены результаты тестирования 16 алгоритмов на 2-х открытых наборах данных, а также замеры скорости их работы. Выводится общая оценка качества алгоритмов.

Детектирование лиц, каскадные классификаторы, свёрточные нейронные сети, глубинное обучение

Короткий адрес: https://sciup.org/14059444

IDR: 14059444   |   DOI: 10.18287/2412-6179-2016-40-1-

Список литературы Обзор и тестирование детекторов фронтальных лиц

  • Kalinovskii, I.A. Compact Convolutional Neural Network Cascade for Face Detection/I.A. Kalinovskii, V.G. Spitsyn . -2015. -URL: http://arxiv.org/abs/1508.01292.pdf (дата обращения 01.02.2016).
  • Viola, P. Rapid object detection using a boosted cascade of simple features/P. Viola, M.J. Jones//IEEE Conference on Computer Vision and Pattern Recognition. -2001. -Vol. 1. -P. 511-518.
  • Lienhart, R. An extended set of Haar-like features for rapid object detection/R. Lienhart, J. Maydt//IEEE International Conference on Image Processing. -2002. -Vol. 1. -P. 900-903.
  • Jain, V. Online domain adaptation of a pre-trained cascade of classifiers/V. Jain, E. Learned-Miller//IEEE Conference on Computer Vision and Pattern Recognition. -2011. -P. 577-584.
  • Subburaman, V. Fast bounding box estimation based face detection/V. Subburaman, S. Marcel//European Conference on Computer Vision, Workshop on Face Detection. -2010. -P. 1-14.
  • Markuš, N. A method for object detection based on pixel intensity comparisons organized in decision trees/N. Markuš, M. Frljak, I.S. Pandžić, J. Ahlberg, R. Forchheimer . -2013. -URL: http://arxiv.org/abs/1305.4537.pdf (дата обращения 01.02.2016).
  • Li, J. Learning SURF cascade for fast and accurate object detection/J. Li, Y. Zhang//IEEE Conference on Computer Vision and Pattern Recognition. -2013. -P. 3468-3475.
  • Barr, J.R. The effectiveness of face detection algorithms in unconstrained crowd scenes/J.R. Barr, K.W. Bowyer, P.J. Flynn//IEEE Winter Conference on Applications of Computer Vision. -2014. -P. 1020-1027.
  • Yang, B. Aggregate channel features for multi-view face detection/B. Yang, J. Yan, Z. Lei, S.Z. Li//IEEE International Joint Conference on Biometrics. -2014. -P. 1-8.
  • Mathias, M. Face detection without bells and whistles/M. Mathias, R. Benenson, M. Pedersoli, L. Van Gool//European Conference on Computer Vision. -2014. -P. 720-735.
  • Zhang, C. Improving multiview face detection with multi-task deep convolutional neural networks/C. Zhang, Z. Zhang//IEEE Winter Conference on Applications of Computer Vision. -2014. -P. 1036-1041.
  • Chen, D. Joint cascade face detection and alignment/D. Chen, S. Ren, Y. Wei, X. Cao, J. Sun//European Conference on Computer Vision. -2014. -P. 109-122.
  • Zhu, X. Face detection, pose estimation, and landmark localization in the wild/X. Zhu, D. Ramanan//IEEE Conference on Computer Vision and Pattern Recognition. -2012. -P. 2879-2886.
  • Li, H. Efficient boosted exemplar-based face detection/H. Li, Z. Lin, J. Brandt, X. Shen, G. Hua//IEEE Conference on Computer Vision and Pattern Recognition. -2014. -P. 1843-1850.
  • Zeiler, M. Visualizing and understanding convolutional networks/M. Zeiler, R. Fergus//European Conference on Computer Vision. -2014. -P. 818-833.
  • Szegedy, C. Going deeper with convolutions/C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich . -2014. -URL: http://arxiv.org/abs/1409.4842.pdf (дата обращения 01.02.2016).
  • Garcia, C. Convolutional face finder: A neural architecture for fast and robust face detection/C. Garcia, M. Delakis//IEEE Transactions on Pattern Analysis and Machine Intelligence. -2004. -P. 1408-1423.
  • Osadchy, M. Synergistic face detection and pose estimation with energy-based models/M. Osadchy, Y. LeCun, M. Miller//Journal of Machine Learning Research. -2007. -P. 1197-1215.
  • Farfade, S.S. Multi-view face detection using deep convolutional neural networks/S.S. Farfade, M. Saberian, L.-J. Li//International Conference on Multimedia Retrieval. -2015.
  • Li, H. A Convolutional neural network cascade for face detection/H. Li, Z. Lin, X. Shen, J. Brandt, G. Hua//IEEE Conference on Computer Vision and Pattern Recognition. -2015. -P. 5325-5334.
  • Калиновский, И.A. Алгоритм детектирования лиц на видео сверхвысокого разрешения/И.A. Калиновский, В.Г. Спицын//Техническое зрение в системах управления. -2015. -С. 95-96.
  • Köstinger, M. Annotated Facial Landmarks in the Wild: A Large-scale, real-world database for facial landmark localization/M. Köstinger, P. Wohlhart, P.M. Roth, H. Bischof//IEEE International Conference on Computer Vision Workshops. -2011. -P. 2144-2151.
  • Vasilache, N. Fast convolutional nets with fbfft: A GPU performance evaluation/N. Vasilache, J. Johnson, M. Mathieu, S. Chintala, S. Piantino, Y. LeCun . -2014. -URL: http://arxiv.org/abs/1412.7580.pdf (дата обращения 01.02.2016).
  • Ioffe, S. Batch normalization: accelerating deep network training by reducing internal covariate shift/S. Ioffe, C. Szegedy . -2015. -URL: http://arxiv.org/abs/1502.03167.pdf (дата обращения 01.02.2016)
  • Lee, C.-Y. Deeply-supervised nets/C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, Z. Tu . -2014. -URL: http://arxiv.org/abs/1409.5185.pdf (дата обращения 01.02.2016)
  • Wolf, L. Face recognition in unconstrained videos with matched background similarity/L. Wolf, T. Hassner, I. Maoz//IEEE Conference on Computer Vision and Pattern Recognition. -2014. -P. 529-534.
  • Kalinovskii, I.A. Face detection algorithm based on the convolutional neural network/I.A. Kalinovskii, V.G. Spitsyn//Neurocomputers: Development and Applications. -No. 10. -2013. -P. 48-53.
  • Le, Q.V. On Optimization Methods for Deep Learning/Q.V. Le, A. Coates, B. Prochnow, A.Y. Ng//International Conference on Machine Learning. -2011. -P. 265-272.
  • Köstinger, M. Efficient metric learning for real-world face recognition/M. Köstinger. -Graz University of Technology: PhD thesis, 2013.
  • Pham, M.T. Fast training and selection and Haar features using statistics in boosting-based face detection/M.T. Pham, T.J. Cham//IEEE International Conference on Computer Vision. -2007. -P. 1-7.
  • Kienzle, W. Face detection: efficient and rank deficient/W. Kienzle, G. Bakir, M. Franz, B. Scholkopf//Advances in Neural Information Processing Systems. -2005. -P. 673-680.
  • Jain, V. FDDB: A Benchmark for face detection in unconstrained settings/V. Jain, E. Learned-Miller//Technical Report UM-CS-2010-009. -University of Massachusetts. -2010.
  • Yang, B. Fine-grained evaluation on face detection in the wild/B. Yang, J. Yan, Z. Lei, S.Z. Li//IEEE International Conference on Automatic Face and Gesture Recognition. -2015.
  • Klare, B.F. Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus Benchmark A./B.F. Klare, B. Klein, E. Taborsky, A. Blanton, J. Cheney, K. Allen, P. Grother, A. Mah, M. Burge, A.K. Jain//IEEE Conference on Computer Vision and Pattern Recognition. -2015. -P. 1931-1939.
  • Davis, J. The relationship between Precision-Recall and ROC curves/J. Davis, M. Goadrich//International Conference on Machine Learning. -2006. -P. 233-240.
  • Everingham, M. The PASCAL visual object classes (VOC) challenge/M. Everingham, L.V. Gool, C. Williams, J. Winn, A. Zisserman//International Journal of Computer Vision. -Vol. 88(2). -2010. -P. 303-338.
  • Oro, D. Real-time GPU-based face detection in HD video sequences/D. Oro, C. Fernandez, J.R. Saeta, X. Martorell, J. Hernando//IEEE International Conference Computer Vision Workshops. -2011. -P. 530-537.
  • Nguyen, T. A software-based dynamic-warp scheduling approach for load-balancing the Viola-Jones face detection algorithm on GPUs/T. Nguyen, D. Hefenbrock, J. Oberg, R. Kastner, S. Baden//Journal of Parallel and Distributed Computing. -Vol. 73(5). -2013. -P. 677-685.
  • Sermanet, P. OverFeat: Integrated recognition, localization and detection using convolutional networks/P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y. LeCun . -2013. -URL: http://arxiv.org/abs/1312.6229.pdf (дата обращения 01.02.2016).
Еще
Статья научная