Обзор методов интеграции интеллектуального анализа данных в СУБД

Бесплатный доступ

Интеллектуальный анализ данных направлен на извлечение доступных для понимания знаний, необходимых для принятия решений в различных сферах человеческой деятельности. Феномен Больших данных является характерным признаком современного информационного общества. Процессы очистки и структурирования Больших данных приводят к образованию сверхбольших баз и хранилищ данных. Несмотря на появление большого количества NoSQL СУБД, основным инструментом управления базами данных по-прежнему остаются реляционные СУБД. Одним из перспективных направлений развития реляционных СУБД является внедрение в них средств интеллектуального анализа данных. Интеграция позволяет как избежать накладных расходов по экспорту анализируемых данных из хранилища и импорту результатов анализа обратно в хранилище, так и использовать при анализе данных системные сервисы, заложенные в архитектуре СУБД. В статье представлен обзор методов и подходов к решению задачи интеграции интеллектуального анализа данных в СУБД. Приводится классификация подходов к решению задачи интеграции интеллектуального анализа данных в СУБД. Представлены расширения языка баз данных SQL, обеспечивающие синтаксическую поддержку интеллектуального анализа данных в СУБД. Рассмотрены примеры реализации алгоритмов интеллектуального анализа данных на SQL и систем анализа данных в реляционных СУБД.

Еще

Интеллектуальный анализ данных, реляционная субд, классификация, кластеризация, поиск шаблонов

Короткий адрес: https://sciup.org/147233194

IDR: 147233194   |   DOI: 10.14529/cmse190203

Список литературы Обзор методов интеграции интеллектуального анализа данных в СУБД

  • Миниахметов Р.М., Цымблер М.Л. Интеграция алгоритма кластеризации Fuzzy c-Means в PostgreSQL // Вычислительные методы и программирование: Новые вычислительные технологии. 2012. Т. 13. С. 46-52.
  • Речкалов Т.В. Подход к интеграции интеллектуального анализа данных в реляционную СУБД на основе генерации текстов хранимых процедур // Вестник Южно-Уральского государственного университета. Серия: Вычислительная математика и информатика. 2013. Т. 2, № 1. С. 114-121.
  • Agrawal R., Ailamaki A., Bernstein P.A. et al. The Claremont Report on Database Research // Commun. ACM. 2009. Vol. 52, No. 6. P. 56-65. DOI: 10.1145/1516046.1516062
  • Agrawal R., Srikant R. Fast Algorithms for Mining Association Rules in Large Databases // VLDB'94, Proceedings of 20th International Conference on Very Large Data Bases, September 12-15, 1994, Santiago de Chile, Chile. 1994. P. 487-499.
  • Agrawal R., Shim K. Developing Tightly-coupled Data Mining Applications on a Relational Database System // Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, Oregon, USA. 1996. P. 287-290.
  • Abadi D., Agrawal R., Ailamaki A. et al. The Beckman Report on Database Research // Commun. ACM. 2016. Vol. 59, No. 2. P. 92-99.
  • DOI: 10.1145/2845915
  • Alashqur A. RDB-MINER: A SQL-Based Algorithm for Mining True Relational Databases // Journal of Software. 2010. Vol. 5, No. 9. P. 998-1005.
  • DOI: 10.4304/jsw.5.9.998-1005
  • Balachandran R., Padmanabhan S., Chakravarthy S. Enhanced DBSubdue: Supporting Subtle Aspects of Graph Mining Using a Relational Approach // Advances in Knowledge Discovery and Data Mining, 10th Pacific-Asia Conference, PAKDD 2006, Singapore, April 9-12, 2006, Proceedings. 2006. P. 673-678.
  • DOI: 10.1007/11731139_77
  • Berthold M.R., Cebron N., Dill F. et al. KNIME - the Konstanz Information Miner: Version 2.0 and Beyond // SIGKDD Explorations. 2009. Vol. 11, No. 1. P. 26-31.
  • DOI: 10.1145/1656274.1656280
  • Bezdek J.C., Ehrlich R., Full W. FCM: The Fuzzy C-Means Clustering Algorithm // Computers and Geosciences. 1984. Vol. 10, No. 2. P. 191-203.
  • DOI: 10.1016/0098-3004(84)90020-7
  • Blockeel H., Calders T., Fromont E. et al. An Inductive Database Prototype Based on Virtual Mining Views // Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, Nevada, USA, August 24-27, 2008. 2008. P. 1061-1064.
  • DOI: 10.1145/1401890.1402019
  • Blockeel H., Calders T., Fromont E. et al. An Inductive Database Prototype Based on Virtual Mining Views // Data Min. Knowl. Discov. 2012. Vol. 24, No. 1. P. 247-287.
  • DOI: 10.1007/s10618-011-0229-7
  • Blockeel H., Calders T., Fromont E. et al. Inductive Querying with Virtual Mining Views // Inductive Databases and Constraint-Based Data Mining. Ed. by S. Dzeroski, B. Goethals, P. Panov. Springer, 2010. P. 265-287.
  • DOI: 10.1007/978-1-4419-7738-0_11
  • Brin S., Motwani R., Ullman J.D., Tsur S. Dynamic Itemset Counting and Implication Rules for Market Basket Data // SIGMOD 1997, Proceedings ACM SIGMOD International Conference on Management of Data, May 13-15, 1997, Tucson, Arizona, USA. 1997. P. 255-264.
  • DOI: 10.1145/253260.253325
  • Bogorny V., Kuijpers B., Alvares L.O. ST-DMQL: A Semantic Trajectory Data Mining Query Language // International Journal of Geographical Information Science. 2009. Vol. 23, No. 10. P. 1245-1276.
  • Breiman L., Friedman J., Olshen R., Stone C. Classification and Regression Trees. Wadsworth International Group, 1984.
  • Calders T., Lakshmanan L.V.S., Ng R.T., Paredaens J. Expressive Power of an Algebra for Data Mining // ACM Trans. Database Syst. 2006. Vol. 31, No. 4. P. 1169-1214.
  • DOI: 10.1145/1189769.1189770
  • Chakravarthy S., Pradhan S. DB-FSG: An SQL-based Approach for Frequent Subgraph Mining // Database and Expert Systems Applications, 19th International Conference, DEXA 2008, Turin, Italy, September 1-5, 2008. Proceedings. 2008. P. 684-692.
  • DOI: 10.1007/978-3-540-85654-2_59
  • Chaudhuri S. What Next?: a Half-dozen Data Management Research Goals for Big Data and the Cloud // Proceedings of the 31st ACM SIGMODSIGACT- SIGART Symposium on Principles of Database Systems, PODS 2012, Scottsdale, AZ, USA, May 20-24, 2012. 2012. P. 1-4.
  • DOI: 10.1145/2213556.2213558
  • Chen X., Petrounias I. Language Support for Temporal Data Mining // Principles of Data Mining and Knowledge Discovery, 2nd European Symposium, PKDD '98, Nantes, France, September 23-26, 1998, Proceedings. 1998. P. 282-290.
  • DOI: 10.1007/BFb0094830
  • Codd E.F. A Relational Model of Data for Large Shared Data Banks // Commun. ACM. 1970. Vol. 13, No. 6. P. 377-387.
  • DOI: 10.1145/362384.362685
  • Davoudian A., Chen L., Liu M. A Survey on NoSQL Stores // ACM Comput. Surv. 2018. Vol. 51, No. 2. P. 40:1-40:43.
  • DOI: 10.1145/3158661
  • Ester M., Kriegel H., Sander J., Xu X. A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise // Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, Oregon, USA. 1996. P. 226-231.
  • Frank E., Hall M.A., Holmes G. et al. WEKA - A Machine Learning Workbench for Data Mining // The Data Mining and Knowledge Discovery Handbook. / Ed. by O. Maimon, L. Rokach. Springer, 2005. P. 1305-1314.
  • Frawley W.J., Piatetsky-Shapiro G., Matheus C.J. Knowledge Discovery in Databases: an Overview // Knowledge Discovery in Databases. AAAI/MIT Press, 1991. P. 1-30.
  • Dempster A., Laird N., Rubin D. Maximum Likelihood Estimation from Incomplete Data via the EM Algorithm // Journal of The Royal Statistical Society. 1977. Vol. 39, No. 1. P. 1-38.
  • Garcia W., Ordonez C., Zhao K., Chen P. Efficient Algorithms Based on Relational Queries to Mine Frequent Graphs // Proceedings of the 3rd PhD Workshop on Information and Knowledge Management, PIKM 2010, Toronto, Ontario, Canada, October 30, 2010. 2010. P. 17-24.
  • DOI: 10.1145/1871902.1871906
  • Guha S., Mishra N., Motwani R., O'Callaghan L. Clustering Data Streams // Proceedings of the 41st Annual Symposium on Foundations of Computer Science, FOCS 2000, 12-14 November 2000, Redondo Beach, California, USA. 2000. P. 359-366.
  • DOI: 10.1109/SFCS.2000.892124
  • Han J., Fu Y., Wang W. et al. DBMiner: A System for Mining Knowledge in Large Relational Databases // Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, Oregon, USA. 1996. P. 250-255.
  • Han J., Kamber M. Data Mining: Concepts and Techniques. Morgan Kaufmann, 2006. P. 743.
  • Han J., Koperski K., Stefanovic N. GeoMiner: A System Prototype for Spatial Data Mining // SIGMOD 1997, Proceedings ACM SIGMOD International Conference on Management of Data, May 13-15, 1997, Tucson, Arizona, USA. 1997. P. 553-556.
  • DOI: 10.1145/253260.253404
  • Han J., Pei J., Yin Y. Mining Frequent Patterns without Candidate Generation // Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, May 16-18, 2000, Dallas, Texas, USA. 2000. P. 1-12.
  • DOI: 10.1145/342009.335372
  • Hellerstein J.M., Re C., Schoppmann F. et al. The MADlib Analytics Library or MAD Skills, the SQL // PVLDB. 2012. Vol. 5, No. 12. P. 1700-1711.
  • HooshSadat M., Samuel H.W., Patel S., Zaiane O.R. Fastest Association Rule Mining Algorithm Predictor (FARM-AP) // Proceedings of the 4th International C* Conference on Computer Science and Software Engineering, C3S2E 2011, Montreal, Quebec, Canada, May 16-18, 2011. P. 43-50.
  • DOI: 10.1145/1992896.1992902
  • Houtsma M.A.W., Swami A.N. Set-Oriented Mining for Association Rules in Relational Databases // Proceedings of the 11th International Conference on Data Engineering, March 6-10, 1995, Taipei, Taiwan. 1995. P. 25-33.
  • DOI: 10.1109/ICDE.1995.380413
  • Huang Z. Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values // Data Min. Knowl. Discov. 1998. Vol. 2, No. 3. P. 283-304.
  • DOI: 10.1023/A:1009769707641
  • Imielinski T., Virmani A. MSQL: A Query Language for Database Mining // Data Min. Knowl. Discov. 1999. Vol. 3, No. 4. P. 373-408.
  • DOI: 10.1023/A:1009816913055
  • Karypis G., Kumar V. Analysis of Multilevel Graph Partitioning // Proceedings of Supercomputing '95, San Diego, CA, USA, December 4-8, 1995. 1995. P. 29.
  • DOI: 10.1145/224170.224229
  • Kaufman L., Rousseeuw P.J. Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley, 1990.
  • DOI: 10.1002/9780470316801
  • Krause C., Johannsen D., Deeb R. et al. An SQL-Based Query Language and Engine for Graph Pattern Matching // Graph Transformation - 9th International Conference, ICGT 2016, in Memory of Hartmut Ehrig, Held as Part of STAF 2016, Vienna, Austria, July 5-6, 2016, Proceedings. 2016. P. 153-169.
  • DOI: 10.1007/978-3-319-40530-8_10
  • Kowalski M., Stawicki S. SQL-based Heuristics for Selected KDD Tasks over Large Data Sets // Proceedings of the FedCSIS 2012, Federated Conference on Computer Science and Information Systems, Wroclaw, Poland, 9-12 September 2012. IEEE, 2012. P. 303-310.
  • Lepinioti K., McKearney S. Integrating Cobweb with a Relational Database // Proceedings of the International MultiConference of Engineers and Computer Scientists 2007, IMECS 2007, March 21-23, 2007, Hong Kong, China. 2007. P. 868-873
  • Liu G., Lu H., Lou W. et al. Efficient Mining of Frequent Patterns Using Ascending Frequency Ordered Prefix-Tree // Data Min. Knowl. Discov. 2004. Vol. 9, No. 3. P. 249-274.
  • DOI: 10.1023/B:DAMI.0000041128.59011.53
  • Liu J., Pan Y., Wang K., Han J. Mining Frequent Item Sets by Opportunistic Projection // Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, July 23-26, 2002, Edmonton, Alberta, Canada. 2002. P. 229-238.
  • DOI: 10.1145/775047.775081
  • Lizardo E.O., Davis C.A. A PostGIS Extension to Support Advanced Spatial Data Types and Integrity Constraints // Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS 2017, Redondo Beach, CA, USA, November 7-10, 2017. P. 33:1-33:10.
  • DOI: 10.1145/3139958.3140020
  • Lloyd S.P. Least Squares Quantization in PCM // IEEE Transactions on Information Theory. 1982. Vol. 28, No. 2. P. 129-136.
  • DOI: 10.1109/TIT.1982.1056489
  • Mahajan D., Kim J.K., Sacks J. et al. In-RDBMS Hardware Acceleration of Advanced Analytics // PVLDB. 2018. Vol. 11, No. 11. P. 1317-1331.
  • Matusevich D.S., Ordonez C. A Clustering Algorithm Merging MCMC and EM Methods Using SQL Queries // Proceedings of the 3rd International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications, BigMine 2014, New York City, USA, August 24, 2014. 2014. P. 61-76.
  • Malerba D., Appice A., Ceci M. A Data Mining Query Language for Knowledge Discovery in a Geographical Information System // Database Support for Data Mining Applications: Discovering Knowledge with Inductive Queries. 2004. P. 95-116.
  • DOI: 10.1007/978-3-540-44497-8_5
  • McCaffrey J.D. A Hybrid System for Analyzing Very Large Graphs // Ninth International Conference on Information Technology: New Generations, ITNG 2012, Las Vegas, Nevada, USA, April 16-18, 2012. 2012. P. 253-257.
  • DOI: 10.1109/ITNG.2012.43
  • Meo R., Psaila G., Ceri S. A New SQL-like Operator for Mining Association Rules // VLDB'96, Proceedings of 22th International Conference on Very Large Data Bases, September 3-6, 1996, Mumbai (Bombay), India. 1996. P. 122-133.
  • Moertini V., Sitohang B., Santosa O.S. Searching Object-Relational DBMS Features for Improving Efficiency and Scalability of Decision Tree Algorithms. iiWAS'2006 - The 8th International Conference on Information Integration and Web-based Applications Services, December 4-6, 2006, Yogyakarta, Indonesia. 2006. pp. 323-330.
  • Ordonez C. Statistical Model Computation with UDFs // IEEE Trans. Knowl. Data Eng. 2010. Vol. 22, No. 12. P. 1752-1765.
  • DOI: 10.1109/TKDE.2010.44
  • Ordonez C. Can We Analyze Big Data Inside a DBMS? // Proceedings of the 16th International Workshop on Data Warehousing and OLAP, DOLAP 2013, San Francisco, CA, USA, October 28, 2013. 2013. P. 85-92.
  • DOI: 10.1145/2513190.2513198
  • Ordonez C. Programming the K-means Clustering Algorithm in SQL // Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle, Washington, USA, August 22-25, 2004. 2004. P. 823-828.
  • DOI: 10.1145/1014052.1016921
  • Ordonez C. Integrating K-Means Clustering with a Relational DBMS Using SQL // IEEE Trans. Knowl. Data Eng. 2006. Vol. 18, No. 2. P. 188-201.
  • DOI: 10.1109/TKDE.2006.31
  • Ordonez C., Cereghini P. SQLEM: Fast Clustering in SQL Using the EM Algorithm // Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, May 16-18, 2000, Dallas, Texas, USA. 2000. P. 559-570.
  • DOI: 10.1145/342009.335468
  • Ordonez C., Chen Z. Horizontal Aggregations in SQL to Prepare Data Sets for Data Mining Analysis // IEEE Trans. Knowl. Data Eng. 2012. Vol. 24, No. 4. P. 678-691.
  • DOI: 10.1109/TKDE.2011.16
  • Ordonez C., Garcia-Alvarado C. A Data Mining System Based on SQL Queries and UDFs for Relational Databases // Proceedings of the 20th ACM Conference on Information and Knowledge Management, CIKM 2011, Glasgow, United Kingdom, October 24-28, 2011. 2011. P. 2521-2524.
  • DOI: 10.1145/2063576.2064008
  • Ordonez C., Garcia-Alvarado C., Baladandayuthapani V. Bayesian Variable Selection in Linear Regression in One Pass for Large Datasets // TKDD. 2014. Vol. 9, No. 1. P. 3:1-3:14.
  • DOI: 10.1145/2629617
  • Ordonez C., Garcia-Garcia J., Garcia-Alvarado C. et al. Data Mining Algorithms as a Service in the Cloud Exploiting Relational Database Systems // Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013. 2013. P. 1001-1004.
  • DOI: 10.1145/2463676.2465240
  • Ordonez C., Mohanam N., Garcia-Alvarado C. PCA for Large Data Sets with Parallel Data Summarization // Distributed and Parallel Databases. 2014. Vol. 32, No. 3. P. 377-403.
  • DOI: 10.1007/s10619-013-7134-6
  • Padmanabhan S., Chakravarthy S. HDB-Subdue: A Scalable Approach to Graph Mining // Data Warehousing and Knowledge Discovery, 11th International Conference, DaWaK 2009, Linz, Austria, August 31 - September 2, 2009, Proceedings. 2009. P. 325-338.
  • DOI: 10.1007/978-3-642-03730-6_26
  • Pan C., Zymbler M. Very Large Graph Partitioning by Means of Parallel DBMS // Advances in Databases and Information Systems - 17th East European Conference, ADBIS 2013, Genoa, Italy, September 1-4, 2013. Proceedings. 2013. P. 388-399.
  • DOI: 10.1007/978-3-642-40683-6_29
  • Park J.S., Chen M., Yu P.S. An Effective Hash Based Algorithm for Mining Association Rules // Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data, San Jose, California, May 22-25, 1995. 1995. P. 175-186.
  • DOI: 10.1145/223784.223813
  • Rantzau R. Frequent Itemset Discovery with SQL Using Universal Quantification // Database Support for Data Mining Applications: Discovering Knowledge with Inductive Queries. 2004. P. 194-213.
  • DOI: 10.1007/978-3-540-44497-8_10
  • Rantzau R., Shapiro L.D., Mitschang B., Wang Q. Algorithms and Applications for Universal Quantification in Relational Databases // Information Systems. 2003. Vol. 28, No. 1-2. P. 3-32.
  • DOI: 10.1016/S0306-4379(02)00047-9
  • Sarawagi S., Thomas S., Agrawal R. Integrating Mining with Relational Database Systems: Alternatives and Implications // SIGMOD 1998, Proceedings ACM SIGMOD International Conference on Management of Data, June 2-4, 1998, Seattle, Washington, USA. 1998. P. 343-354.
  • DOI: 10.1145/276304.276335
  • Sattler K.-U., Dunemann O. SQL Database Primitives for Decision Tree Classifiers // Proceedings of the 2001 ACM CIKM International Conference on Information and Knowledge Management, Atlanta, Georgia, USA, November 5-10, 2001. ACM, 2001. P. 379-386.
  • DOI: 10.1145/502585.502650
  • Savasere A., Omiecinski E., Navathe S.B. An Efficient Algorithm for Mining Association Rules in Large Databases // VLDB'95, Proceedings of 21th International Conference on Very Large Data Bases, September 11-15, 1995, Zurich, Switzerland. 1995. P. 432-444.
  • Shang X., Sattler K., Geist I. SQL Based Frequent Pattern Mining with FP-Growth // Applications of Declarative Programming and Knowledge Management, 15th International Conference on Applications of Declarative Programming and Knowledge Management, INAP 2004, and 18th Workshop on Logic Programming, WLP 2004, Potsdam, Germany, March 4-6, 2004, Revised Selected Papers. 2004. P. 32-46.
  • DOI: 10.1007/11415763_3
  • Sidlo C.I., Lukacs A. Shaping SQL-based Frequent Pattern Mining Algorithms // Knowledge Discovery in Inductive Databases, 4th International Workshop, KDID 2005, Porto, Portugal, October 3, 2005, Revised Selected and Invited Papers. 2005. P. 188-201.
  • DOI: 10.1007/11733492_11
  • Silva Y.N., Aref W.G., Ali M.H. Similarity Group-By // Proceedings of the 25th International Conference on Data Engineering, ICDE 2009, March 29, 2009 - April 2, 2009, Shanghai, China. 2009. P. 904-915.
  • DOI: 10.1109/ICDE.2009.113
  • Srihari S., Chandrashekar S., Parthasarathy S. A Framework for SQLBased Mining of Large Graphs on Relational Databases // Advances in Knowledge Discovery and Data Mining, 14th Pacific-Asia Conference, PAKDD 2010, Hyderabad, India, June 21-24, 2010. Proceedings. Part II. 2010. P. 160-167.
  • DOI: 10.1007/978-3-642-13672-6_16
  • Stonebraker M., Madden S., Dubey P. Intel "Big Data" Science and Technology Center Vision and Execution Plan // SIGMOD Record. 2013. Vol. 42, No. 1. P. 44-49.
  • DOI: 10.1145/2481528.2481537
  • Sun P., Huang Y., Zhang C. Cluster-By: An Efficient Clustering Operator in Emergency Management Database Systems // Web-Age Information Management - WAIM 2013 International Workshops: HardBD, MDSP, BigEM, TMSN, LQPM, BDMS, Beidaihe, China, June 14-16, 2013. Proceedings. 2013. P. 152-164.
  • DOI: 10.1007/978-3-642-39527-7_17
  • Tamayo P., Berger C., Campos M.M., et al. Oracle Data Mining - Data Mining in the Database Environment // The Data Mining and Knowledge Discovery Handbook. Ed. by O. Maimon, L. Rokach. Springer, 2005. P. 1315-1329.
  • Tang Z., Maclennan J., Kim P.P. Building Data Mining Solutions with OLE DB for DM and XML for analysis // SIGMOD Record. 2005. Vol. 34, No. 2. P. 80-85.
  • DOI: 10.1145/1083784.1083805
  • Thomas S., Chakravarthy S. Performance Evaluation and Optimization of Join Queries for Association Rule Mining // Data Warehousing and Knowledge Discovery, 1st International Conference, DaWaK'99, Florence, Italy, August 30 - September 1, 1999, Proceedings. 1999. P. 241-250.
  • DOI: 10.1007/3-540-48298-9_26
  • Turner V., Gantz J., Reinsel D., et al. The Digital Universe of Opportunities: Rich Data and the Increasing Value of the Internet of Things. 2014. URL: http://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm (дата обращения: 05.02.2019).
  • Zaki M.J. Scalable Algorithms for Association Mining // IEEE Trans. Knowl. Data Eng. 2000. Vol. 12, No. 3. P. 372-390.
  • DOI: 10.1109/69.846291
  • Wang F., Gordon J., Helian N. SQL Implementation of a ScanOnce Algorithm for Large Database Mining // Engineering Federated Information Systems, Proceedings of the 5th Workshop EFIS 2003, July 17-18 2003, Coventry, UK. 2003. P. 43-45.
  • Wang H., Zaniolo C., Luo C. ATLAS: A Small but Complete SQL Extension for Data Mining and Data Streams // VLDB. 2003. P. 1113-1116.
  • Wang W., Yang J., Muntz R.R. STING: A Statistical Information Grid Approach to Spatial Data Mining // VLDB'97, Proceedings of 23rd International Conference on Very Large Data Bases, August 25-29, 1997, Athens, Greece. 1997. P. 186-195.
  • Yoshizawa T., Pramudiono I., Kitsuregawa M. SQL Based Association Rule Mining Using Commercial RDBMS (IBM DB2 UBD EEE) // Data Warehousing and Knowledge Discovery, Second International Conference, DaWaK 2000, London, UK, September 4-6, 2000, Proceedings. 2000. P. 301-306.
  • DOI: 10.1007/3-540-44466-1_30
Еще
Статья научная