The estimate of the distortion of the tetrahedron isoperimetricity coefficient under bi-Lipschitz mapping

Автор: Shurkaeva Diana Vasilevna

Журнал: Математическая физика и компьютерное моделирование @mpcm-jvolsu

Рубрика: Математика

Статья в выпуске: 2 (19), 2013 года.

Бесплатный доступ

The article assesses the tetrahedron isoperimetricity coefficient obtained by quasi-isometric mapping through the original tetrahedron isoperimetricity coefficient. This coefficient determines the condition of finiteness conservation of gradient for tetrahedral mesh under quasi-isometric mapping. Main Results: Let’s in the space given tetrahedron 𝑇, in which the length of the maximum edge is equal to 𝑑, the minimum is 𝑎, the lower face area is 𝑆, and : R3 → R3 is bi-Lipschitz mapping with constants

Coefficient of isoperimetricity, tetrahedron, cayley — menger determinant, heron — tartaglia formula, bi-lipschitz mapping, quasi-isometric mapping

Короткий адрес: https://sciup.org/14968737

IDR: 14968737

Статья научная