Оценка рисков распространения генетически модифицированной кукурузы с пыльцой при выращивании с нетрансформированными сортами

Автор: Чумаков М.И., Гусев Ю.С., Богатырева Н.В., Соколов А.Ю.

Журнал: Сельскохозяйственная биология @agrobiology

Рубрика: Обзоры, проблемы

Статья в выпуске: 3 т.54, 2019 года.

Бесплатный доступ

Крупномасштабное промышленное производство генетически модифицированных (ГМ) растений, и в частности кукурузы, началось в 1996 году. К 2016 году площадь, занимаемая ГМ-культурами, увеличилась в 100 раз, при этом почти треть этих площадей занимает ГМ-кукуруза, поэтому вопросы ее распространения и перекрестного опыления стали более актуальными в практическом аспекте. В Россия никогда не выращивали ГМ-культуры, хотя уже 10 лет назад в Российской Федерации прошли исследования и были разрешены для использования 15 ГМ-линий, в том числе 8 - кукурузы. Федеральным законом от 3 июля 2016 года № 358-ФЗ установлен запрет на коммерческое выращивание ГМ-растений в России, но впервые разрешено выращивать и тестировать ГМ-растения в научных целях. Однако необходимая правовая база для проведения таких исследований не была разработана ни до, ни после вступления в силу Федерального закона № 358-ФЗ. Согласно Конвенции по биоразнообразию (1993), каждая страна-участница должна разработать стратегию и программу по сохранению и использованию своих биоресурсов, принимая во внимание их гарантированное и безопасное воспроизводство...

Еще

Генетически-модифицированная кукуруза, поток генов, пыльца, цмс, возделывание гм-культур, законодательное регулирование

Короткий адрес: https://sciup.org/142220117

IDR: 142220117   |   DOI: 10.15389/agrobiology.2019.3.426rus

Список литературы Оценка рисков распространения генетически модифицированной кукурузы с пыльцой при выращивании с нетрансформированными сортами

  • Pellegrino E., Bedini S., Nuti M., Ercoli L. Impact of genetically engineered maize on agronomic, environmental and toxicological traits: a meta-analysis of 21 years of field data. Scientific Reports, 2018, 8(3113): 1-12 ( ) DOI: 10.1038/s41598-018-21284-2
  • ISAAA. Global Status of Commercialized Biotech/GM Crops: 2017. Biotech Crop Adoption Surges as Economic Benefits Accumulate in 22 years. ISAAA Brief No. 53. ISAAA, Ithaca, NY, 2017.
  • ISAAA. Global Status of Commercialized Biotech/GM Crops: 2016. ISAAA Brief No. 52. ISAAA, Ithaca, NY, 2016.
  • Голиков А.Г., Степанова Н.Г., Красовский О.А., Скрябин К.Г. Конвенция о биологическом разнообразии -развитие взгляда на биобезопасность и биотехнологию. Биотехнология, 1997, 1: 53-58.
  • Чесноков Ю.В. ГМО и генетические ресурсы растений: экологическая и агротехническая безопасность. Вавиловский журнал генетики и селекции, 2011, 15(4): 818-827.
  • Romeis J., Naranjo S.E., Meissle M., Shelton A.M. Genetically engineered crops help support conservation Biological Control. Biological Control, 2019, 130: 136-154 ( )
  • DOI: 10.1016/j.biocontrol.2018.10.001
  • Bannert M., Stamp P. Cross-pollination of maize at long distance. European Journal of Agronomy, 2007, 27: 44-51 ( )
  • DOI: 10.1016/j.eja.2007.01.002
  • Baltazar B., Castro Espinoza L., Espinoza Banda A., de la Fuente Martínez J.M., Garzón Tiznado J.A., González García J., Gutiérrez M.A., Guzmán Rodríguez J.L., Heredia Díaz O., Horak M.J., Madueño Martínez J.I., Schapaugh A.W., Stojšin D., Uribe Montes H.R., Zavala García F. Pollen-mediated gene flow in maize: implications for isolation requirements and coexistence in Mexico, the center of origin of maize. PloS ONE, 2015, 10: e0131549 ( )
  • DOI: 10.1371/journal.pone.0131549
  • Marceau A., Gustafson D.I., Brants I.O., Leprince F., Foueillassar X., Riesgo L., Areale F.-J., Sowaf S., Kraicg J., Badeah E.M. Updated empirical model of genetically modified maize grain production practices to achieve European Union labeling thresholds. Crop Science, 2013, 53: 1712-1721 ( )
  • DOI: 10.2135/cropsci2012.04.0224
  • Luna S., Figueroa J., Baltazar B., Gomez R., Townsend R., Schoper J.B. Maize pollen longevity and distance isolation requirements for effective pollen control. Crop Science, 2001, 41: 1551-1557 (м)
  • DOI: 10.2135/cropsci2001.4151551x
  • Angevin F., Klein E., Choimet C., Meynard J., de Rouw A., Sohbi Y. Modélisation des effets des systèmes de culture et du climat sur les pollinisations croisées chez le maïs. Isolement des collectes et maîtrise des disséminations au champ. In: Rapport du groupe 3 du programme de recherche: pertinence économique et faisabilité d’une filière sans utilisation d’OGM, INRAFNSEA/J.-M. Meynard, M. Le Bail (eds.). Thiverval-Grignon, France, 2001: 21-36.
  • Aylor D. Survival of maize (Zea mays) pollen exposed in the atmosphere. Agricultural and Forest Meteorology, 2004, 123: 125-133 ( )
  • DOI: 10.1016/j.agrformet.2003.12.007
  • Jarosz N., Loubet B., Durand B., Foueillassar X., Huber L. Variations in maize pollen emission and deposition in relation to microclimate. Environmental Science & Technology, 2005, 39: 4377-4384 ( )
  • DOI: 10.1021/es0494252
  • Devos Y., Reheul D., De Schrijver A. The co-existence between transgenic and non-transgenic maize in the European Union: a focus on pollen flow and cross-fertilization. Environmental Biosafety Research, 2005, 4(2): 71-87 ( )
  • DOI: 10.1051/ebr:2005013
  • Ma B.L., Subedi K.D., Reid L.M. Extent of cross-fertilization in maize by pollen from neighboring transgenic hybrids. Crop Science, 2004, 44: 1273-1282 ( )
  • DOI: 10.2135/cropsci2004.1273
  • Galeano P., Debat C.M., Ruibal F., Fraguas L.F., Galván G.A. Cross-fertilization between genetically modified and non-genetically modified maize crops in Uruguay. Environmental Biosafety Research, 2010, 9(3): 147-154 ( )
  • DOI: 10.1051/ebr/2011100
  • Aylor D., Schultes N., Shields E. An aerobiological framework for assessing cross-pollination in ma-ize. Agricultural and Forest Meteorology, 2003, 119: 111-129 ( )
  • DOI: 10.1016/S0168-1923(03)00159-X
  • Emberlin J., Adams-Groom B., Tidmarsh J. A report on the dispersal of maize pollen. In: Report commissioned by and available from the Soil Association National Pollen Research Unit. Bristol House, Bristol, UK, 1999: 40-56.
  • Mele E. Spanish study shows that coexistence is possible. Agricultural Biotechnology International Conference, 2004, 3: 2.
  • Ortega Molina J. Results of the studies into the coexistence of genetically modified and conventional maize. COPA-COGECA colloquy on the co-existence and thresholds of adventitious presence on GMOs in conventional seeds, 2004. Режим доступа: http://www.copa-cogeca.be/pdf/9.pdf. Без даты.
  • Weber W.E., Bringezu T., Broer I., Eder J., Holz F. Coexistence between GM and non-GM maize crops -tested in 2004 at the field scale level (Erprobungsanbau 2004). Journal of Agronomy and Crop Science, 2007, 193: 79-92 ()
  • DOI: 10.1111/j.1439-037X.2006.00245.x
  • Palaudelmas M., Mele E., Monfort A., Serra J., Salvia J., Messeguer J. Assessment of the influence of field size on maize gene flow using SSR analysis. Transgenic Research, 2012, 21(3): 471-483 ( )
  • DOI: 10.1007/s11248-011-9549-z
  • Ingram J. The separation distances required to ensure cross-pollination is below specified limits in non-seed crops of sugar beet, maize and oilseed rape. Plant Varieties and Seeds, 2000, 13(3): 181-199.
  • Novotny E., Perdang J. Report on a model for pollen transport by wind. In: Report for the Chardon LL hearing. London, 2002.
  • Westgate M., Lizaso J., Batchelor W. Quantitative relationship between pollen-shed density and grain yield in maize. Crop Science, 2003, 43: 934-942 ( )
  • DOI: 10.2135/cropsci2003.9340
  • Bock A.-K., Lheureux K., Libeau-Dulos M., Nilsagard H., Rodriguez-Cerezo E. Scenarios for co-existence of genetically modified, conventional and organic crops in European agriculture. IPTS-JRC, Seville, Spain, 2002.
  • Brookes G., Barfoot P., Melé E., Messeguer J., Bénétrix F., Bloc D., Foueillassar X., Fabié A., Poeydomenge C. Genetically modified maize: pollen movement and crop coexistence. PG Economics Ltd., Dorchester, UK, 2004.
  • Du M., Kawashima S., Matsuo K., Yonemura S., Inoue S. Simulation of the effect of a cornfield on wind and pollen deposition. In: International Congress on Modelling and Simulation/F. Ghas-semi, P. Whetton, R. Little, M. Littleboy (eds.). Australian National University, 2001: 899-903.
  • Liu Y., Chen F., Guan X., Li J. High crop barrier reduces gene flow from transgenic to conventional maize in large fields. European Journal of Agronomy, 2015, 71: 135-140 ( )
  • DOI: 10.1016/j.eja.2015.09.005
  • Le Bail M., Lecroart B., Gauffreteau A., Angevin F., Messean A. Effect of the structural variables of landscapes on the risks of spatial dissemination between GM and non-GM maize. European Journal of Agronomy, 2010, 33: 12-23 ( )
  • DOI: 10.1016/j.eja.2010.02.002
  • Henry C., Morgan D., Weekes R., Daniels R., Boffey C. Farm scale evaluations of GM crops: monitoring gene flow from GM crops to non-GM equivalent crops in the vicinity: Part I: Forage maize. DEFRA report EPG, 2003.
  • Weekes R., Allnutt T., Boffey C., Morgan S., Bilton M., Daniels R., Henry C. A study of crop-to-crop gene flow using farm scale sites of fodder maize (Zea mays L.) in the UK. Transgenic Research, 2007, 16(2): 203-211 ( )
  • DOI: 10.1007/s11248-006-9036-0
  • Devos Y., Demont M., Sanvido O. Coexistence in the EU -return of the moratorium on GM crops? Nature Biotechnology, 2008, 26(11): 1223-1225 ( )
  • DOI: 10.1038/nbt1108-1223
  • Gustafson D.I., Brants I.O., Horak M.J., Remund K.M., Rosenbaum E.W., Soteres J.K. Empirical modeling of genetically-modified maize grain production practices to achieve European Union labeling thresholds. Crop Science, 2006, 46: 2133-2140 ( )
  • DOI: 10.2135/cropsci2006.01.0060
  • Chamecki M., Gleicher S.C., Dufault N.S., Isard S.A. Diurnal variation in settling velocity of pollen released from maize and consequences for atmospheric dispersion and cross-pollination. Agricultural and Forest Meteorology, 2011, 151: 1055-1065 ( )
  • DOI: 10.1016/j.agrformet.2011.03.009
  • Makowski D., Bancal R., Bensadoun A., Monod H., Messéan A. Sampling strategies for evaluating the rate of adventitious transgene presence in non-genetically modified crop fields. Risk Analysis, 2017, 37(9): 1693-1705 ( )
  • DOI: 10.1111/risa.12745
  • Bohn T., Primicerio R., Traavik T. The German ban on GM maize MON810: scientifically justified or unjustified? Environmental Sciences Europe, 2012, 24(22): 1-7 ( )
  • DOI: 10.1186/2190-4715-24-22
  • Della Porta G., Ederle D., Bucchini L., Prandi M., Verderio A., Pozzi C. Maize pollen mediated gene flow in the Po valley (Italy): Source-recipient distance and effect of flowering time. European Journal of Agronomy, 2008, 28: 255-265 ( )
  • DOI: 10.1016/j.eja.2007.07.009
  • Popescu S., Leprince F., Ioja-Boldura O., Marutescu A., Sabau I., Marcela Badea E. Quantification of pollen mediated gene flow in maize. Romanian Biotechnological Letters, 2010, 15: 5351-5360.
  • Van de Wiel C.C.M., Groeneveld R.M.W., Dolstra O., Kok E.J., Scholtens I.M.J., Thissen J., Smulders M.J.M., Lotz L.A.P. Pollen-mediated gene flow in maize tested for coexistence of GM and non-GM crops in the Netherlands: Effect of isolation distances between fields. Njas-Wageningen Journal of Life Sciences, 2009, 56: 405-423 ( )
  • DOI: 10.1016/S1573-5214(09)80007-9
  • Jaffe G. Regulating transgenic crops: a comparative analysis of different regulatory processes. Transgenic Research, 2004, 13: 5-19 ( )
  • DOI: 10.1023/B:TRAG.0000017198.80801.fb
  • Nicolia A., Manzo A., Veronesi F., Rosellini D. An overview of the last 10 years of genetically engineered crop safety research. Critical Review Biotechnology, 2014, 34(1): 77-88 ()
  • DOI: 10.3109/07388551.2013.823595
  • Sirsi E. Coexistence: a new perspective, a new field. Agriculture and Agricultural Science Procedia, 2016, 8: 449-454 ( )
  • DOI: 10.1016/j.aaspro.2016.02.042
  • Ujj O. European and American views on genetically modified foods. The New Atlantis, 2016, 49: 77-92.
  • EC (European Commission). 2015b. Fact sheet: Questions and answers on EU’s policies on GMOs. Режим доступа: http://europa.eu/rapid/press-release_MEMO-15-4778_en.htm. Дата обращения 30.11.2015.
  • Restrictions on Genetically Modified Organisms. Washington: Law Library of Congress, Global Legal Research Center, 2014. Режим доступа: https://www.loc.gov/law/help/restrictions-on-gmos/index.php. Без даты.
  • Deppermann A., Balkovic J., Bundle S.-C., Di Fulvio F., Havlík P., Leclère D., Lesiv M., Prishchepov A., Schepaschenko D. Increasing crop production in Russia and Ukraine-regional and global impacts from intensification and recultivation. Environmental Research Letters, 2018, 13: 025008 ( )
  • DOI: 10.1088/1748-9326/aaa4a4
  • Clive J. Global status of commercialized biotech/gm crops: 2014. ISAAA Brief No. 49. ISAAA, Ithaca, NY, 2014.
  • Brookes G., Barfoot P. Farm income and production impacts of using GM crop technology 1996-2016. GM Crops & Food, 2018, 9: 59-89 ( )
  • DOI: 10.1080/21645698.2018.1464866
  • Жученко А.А. Роль генетической инженерии в адаптивной системе селекции растений. Сельскохозяйственная биология, 2003, 1: 3-33.
  • Животовский Л.А. Стабилизирующий отбор и приспособленность популяций ГМО. В сб.: ГМО -скрытая угроза России/Под ред. И.В. Старикова. М., 2004: 94-104.
  • Muir W.M., Howard R.D. Possible ecological risks of transgenic organism release when transgenes affect mating success: Sexual selection and the Trojan gene hypothesis. Proc. Natl. Acad. Sci. USA, 1999, 96 (24): 13853-13856 ( )
  • DOI: 10.1073/pnas.96.24.13853
  • Piperno D.R., Flannery K.V. The earliest archaeological maize (Zea mays L.) from highland Mexico: new accelerator mass spectrometry dates and their implications. Proc. Natl. Acad. Sci. USA, 2001, 98: 2101-2103 ( )
  • DOI: 10.1073/pnas.98.4.2101
  • Cárdenas F. Latin American maize germplasm regeneration and conservation. In: Proc. Workshop CIMMYT, Mexico, June 4-6, 1996/S. Taba (ed.). CIMMYT, Mexico, 1997: 74.
  • Serratos-Hernandez J.-A., Islas-Gutierrez F., Buendia-Rjdrigueez E., Berthaud J. Gene flow scenarios with transgenic maize in Mexico. Environmental Biosafety Research, 2004. 3: 149-157 ( )
  • DOI: 10.1051/ebr:2004013
  • Quist D., Chapela I.H. Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico. Nature, 2001, 41: 541-543 ( )
  • DOI: 10.1038/35107068
  • Ortiz-Garcıa S., Ezcurra E., Schoel B., Acevedo F., Soberon J., Snow A.A. Absence of detectable transgenes in local landraces of maize in Oaxaca, Mexico (2003-2004). Proc. Natl. Acad. Sci. USA, 2005, 102(35): 12338-12343 ( 10.1073/pnas.0503356102)
  • DOI: :10.1073/pnas.0503356102
  • Bellon M.R., Berthaud J. Transgenic maize and the evolution of landrace diversity in Mexico. The importance of farmers’ behavior. Plant Physiology, 2004, 134: 883-888 ( )
  • DOI: 10.1104/pp.103.038331
  • McHughen A. A critical assessment of regulatory triggers for products of biotechnology: Product vs. process. GM Crops & Food, 2016, 7: 125-158 ( )
  • DOI: 10.1080/21645698.2016.1228516
  • Ramessar K., Capell T., Twyman R.M., Quemada H., Christou P. Trace and traceability -a call for regulatory harmony. Natural Biotechnology, 2008, 26: 975-978 ( )
  • DOI: 10.1038/nbt0908-975
  • Tetsuya I., Motoko A. A future scenario of the global regulatory landscape regarding genome-edited crops. GM Crops & Food, 2017, 8(1): 44-56 ( )
  • DOI: 10.1080/21645698.2016.1261787
  • Baram M. Governance of GM crop and food safety in the United States. In: Governing risk in GM agriculture/M. Baram, M. Bourrier (eds.). Cambridge University Press. 2011: 15-55.
  • Nabradi A., Popp J. Economics of GM crop cultivation. Applied Studies in Agribusiness and Commerce, 2011, 05: 7-19 ( )
  • DOI: 10.19041/Apstract/2011/3-4/1
  • Xu Z., Hennessy D.A., Sardana K., Moschini G.C. The realized yield eject of genetically engineered crops: U.S. maize and soybean. Crop Science, 2013, 53: 735-745 ( )
  • DOI: 10.2135/cropsci2012.06.0399
  • Eastham K., Sweet J. Genetically modified organisms (GMOs): the significance of gene flow through pollen transfer. In: European Environment Agency. Environmental issue report/D. Gee (ed.). Copenhagen, 2002, 28: 38-42.
  • Lee M.S., Anderson E.K., Stojšin D., McPherson M.A., Baltazar B., Horak M.J., de la Fuente J.M., Wu K., Crowley J.H., Rayburn A.L., Lee D.K. Assessment of the potential for gene flow from transgenic maize (Zea mays L.) to eastern gamagrass (Tripsacum dactyloides L.). Transgenic Research, 2017, 26(4): 501-514 ( )
  • DOI: 10.1007/s11248-017-0020-7
  • Instituto Colombiano Agropecuario. Por medio de la cual se implementa el plan de manejo, bioseguridad y seguimiento para siembras controladas de maíz genéticamente modificado. Resolución No. 2894. Bogota, 2010.
  • Chaparro-Giraldo A., Blanco M.J.T., López-Pazos S.A. Evidence of gene flow between transgenic and non-transgenic maize in Colombia. Agronomía Colombiana, 2015, 33(3): 297-304 ( )
  • DOI: 10.15446/agron.colomb.v33n3.51501
  • Vicién C., Trigo E. The Argentinian GMO biosafety system: an evolving perspective. In: Genetically modified organisms in developing countries risk analysis and governance/A. Adendle, E. Jane Morris, J. Denis (eds.). Cambridge University Press, Cambridge, UK, 2017: 247-257 ( )
  • DOI: 10.1017/9781316585269.022
  • Burachik M. Experience from use of GMOs in Argentinian agriculture, economy and environment. New Biotechnology, 2010, 27(5): 588-592 ( )
  • DOI: 10.1016/j.nbt.2010.05.011
  • Coelho M.V.S. Coexistence in Brazil. In: The coexistence of genetically modified, organic and conventional foods/N. Kalaitzandonakes, P. Phillips, J. Wesseler, S. Smyth (eds.). Natural Resource Management and Policy, Springer, NY, USA, 2016, 49: 87-94 ( )
  • DOI: 10.1007/978-1-4939-3727-1_8
  • Viljoen C., Chetty L. A case study of GM maize gene flow in South Africa. Environmental Sciences Europe, 2011, 23: 1-8 ( )
  • DOI: 10.1186/2190-4715-23-8
  • Wang C.Y., Kuo B.J., Hsu Y.H., Yiu T.J., Lin W.S. Using the two-step model based on the field border consideration to evaluate pollen-mediated gene flow (PMGF) model and the isolation distance of GM maize in Potzu city of Chiayi county. Crop, Environment & Bioinformatics, 2013, 10: 172-189 ( )
  • DOI: 10.1371/journal.pone.0131549
  • Smyth S.J. Genetically modified crops, regulatory delays, and international trade. Food Energy Security, 2017, 6: 78-86 ( )
  • DOI: 10.1002/fes3.100
  • Bückmann H., Capellades G., Hamouzová K., Holec J., Soukup J., Messeguer J., Melé E., Nadal A., Guillen X.P., Pla M., Serra J., Thiele K., Schiemann J. Cytoplasmic male sterility as a biological confinement tool for maize coexistence: Optimization of pollinator spatial arrangement. Plant, Soil and Environment, 2017, 63: 145-151 ( )
  • DOI: 10.17221/761/2016-PSE
  • Bruns H.A. Southern corn leaf blight: a story worth retelling. Agronomy Journal. 2017, 109: 1218-1224 ( )
  • DOI: 10.2134/agronj2017.01.0006
  • Schnable P.S., Wise R.P. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends in Plant Science, 1998, 3: 175-180 ( )
  • DOI: 10.1016/S1360-1385(98)01235-7
  • Su A., Song W., Xing J., Zhao Y., Zhang R., Li C., Duan M., Luo M., Shi Z., Zhao J. identification of genes potentially associated with the fertility instability of S-type cytoplasmic male sterility in maize via bulked segregant RNA-seq. PLoS ONE, 2016, 11(9): e0163489 ( )
  • DOI: 10.1371/journal.pone.0163489
  • Liu Y., Wei G., Xia Y., Liu X., Tang J., Lu Y., Lan H., Zhang S., Li C., Cao M. Comparative transcriptome analysis reveals that tricarboxylic acid cycle-related genes are associated with maize CMS-C fertility restoration. BMC Plant Biology, 2018, 18(1): 190 ( )
  • DOI: 10.1186/s12870-018-1409-z
  • Herman R.A., Zhuang M., Storer N.P., Cnudde F., Delaney B. Risk-only assessment of genetically engineered crops is risky. Trends in Plant Science, 2019, 24(1): 58-68 ( )
  • DOI: 10.1016/j.tplants.2018.10.001
  • Bückmann H., Hüsken A., Schiemann J. Applicability of cytoplasmic male sterility (CMS) as a reliable biological confinement method for the cultivation of genetically modified maize in Germany. Journal of Agricultural Science and Technology, 2013, A3: 385-403.
  • Bückmann H., Thiele K., Schiemann J., Husken A. Influence of air temperature on the stability of cytoplasmic male sterility (CMS) in maize (Zea mays L.). AgBioForum, 2014, 2: 205-212.
  • Bückmann H., Thiele K., Schiemann J. CMS maize: a tool to reduce the distance between GM and non-GM maize. EuroChoices, 2016, 15(1): 31-35 ( )
  • DOI: 10.1111/1746-692X.12116
  • WAn X., Wu S., Li Z., Dong Z., An X., Ma B., Tian Y., Li J. Maize genic male-sterility genes and their applications in hybrid breeding: progress and perspectives. Molecular Plant, 2019, 12(3): 321-342 ( )
  • DOI: 10.1016/j.molp.2019.01.014
  • Wu Y., Fox T.W., Trimnell M.R., Wang L., Xu R.J., Cigan A.M., Huffman G.A., Garnaat C.W., Hershey H., Albertsen M.C. Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross pollinating crops. Plant Biotechnology Journal, 2016, 14: 1046-1054 ( )
  • DOI: 10.1111/pbi.12477
  • Zhang D., Wu S., An X., Xie K., Dong Z., Zhou Y., Xu L., Fang W., Liu S., Liu S., Zhu T., Li J., Rao L., Zhao J., WAn X. Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnology Journal, 2018, 16: 459-471 ( )
  • DOI: 10.1111/pbi.12786
  • Feng P.C., Qi Y., Chiu T., Stoecker M.A., Schuster C.L., Johnson S.C., Fonseca A.E., Huang J. Improving hybrid seed production in corn with glyphosate-mediated male sterility. Pest Management Science, 2014, 70: 212-218 ( )
  • DOI: 10.1002/ps.3526
  • Xie K., Wu S., Li Z., Zhou Y., Zhang D., Dong Z., An X., Zhu T., Zhang S., Liu S., Li J., WAn X. Map-based cloning and characterization of Zea mays male sterility33 (ZmMs33) gene, encoding a glycerol-3-phosphate acyltransferase. Theoretical and Applied Genetics, 2018, 131: 1363 ( )
  • DOI: 10.1007/s00122-018-3083-9
  • Chen R., Xu Q., Liu Y., Zhang J., Ren D., Wang G., Liu Y. Generation of transgene-free maize male sterile lines using the CRISPR/Cas9 system. Frontiers in Plant Science, 2018, 9: 1180 ( )
  • DOI: 10.3389/fpls.2018.01180
  • Svitashev S., Schwartz C., Lenderts B., Young J.K., Mark C.A. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nature Communications, 2016, 7: 13274 ( )
  • DOI: 10.1038/ncomms13274
  • Sanvido O., Widmer F., Winzeler M., Streit B., Szerencsits E., Bigler F. Definition and feasibility of isolation distances for transgenic maize cultivation. Transgenic Research, 2008, 17: 317-335 ( )
  • DOI: 10.1007/s11248-007-9103-1
  • Devos Y., Demont M., Dillen K., Reheul D., Kaiser M., Sanvido O. Coexistence of genetically modified (GM) and non-GM crops in the European Union (review). Agronomy for Sustainable Development, 2009, 29: 11-30 ( )
  • DOI: 10.1051/agro:2008051
  • Riesgo L., Areal F.J., Sanvido O., Rodriguez-Cerezo E. Distances needed to limit cross-fertilization between GM and conventional maize in Europe. Nature Biotechnology, 2010, 28: 780-782 ( )
  • DOI: 10.1038/nbt0810-780
  • Langhof M., Hommel B., Hüsken A., Njontie C., Schiemann J., Wehling P., Wilhelm R., Rühl G. Coexistence in maize: isolation distance in dependence on conventional maize field depth and separate edge harvest. Crop Science, 2010, 50: 1496-1508 ( )
  • DOI: 10.2135/cropsci2009.11.0641
  • Marceau A., Saint-Jean S., Loubet B., Foueillassar X., Huber L. Biophysical characteristics of maize pollen: Variability during emission and consequences on cross-pollination risks. Field Crops Research, 2012, 127: 51-63 ( )
  • DOI: 10.1016/j.fcr.2011.11.006
  • Venus T.J., Dillen K., Punt M.J., Wesseler J.H. The costs of coexistence measures for genetically modified maize in Germany. Journal of Agricultural Economics, 2017, 68: 407-426 ()
  • DOI: 10.1111/1477-9552.12178
Еще
Статья обзорная