Ограниченность потенциала Рисса в весовых обобщенных гранд-пространствах Лебега

Автор: Умархаджиев Салаудин Мусаевич

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 2 т.16, 2014 года.

Бесплатный доступ

Доказана теорема о двухвесовой ограниченности линейных операторов во введенных нами ранее обобщенных гранд-пространствах Лебега. С помощью этой теоремы получены двухвесовые оценки нормы потенциала Рисса в рассматриваемых пространствах.

Обобщенное гранд-пространство лебега, потенциал рисса, интерполяционная теорема, весовые оценки

Короткий адрес: https://sciup.org/14318463

IDR: 14318463

Список литературы Ограниченность потенциала Рисса в весовых обобщенных гранд-пространствах Лебега

  • Кокилашвили В. Максимальные функции и интегралы типа потенциала в весовых пространствах Лебега и Лоренца//Тр. Мат. ин-та АН СССР.-1985.-Vol. 172.-C. 192-201.
  • Соболев С. Л. Об одной теореме функционального анализа//Мат. сб.-1938.-Vol. 4(3).-C. 471-497.
  • Умархаджиев С. М. Обобщение понятия гранд-пространства Лебега//Изв. вузов. Математика.-2014.-Vol. 4.-C. 42-51.
  • Bergh J., Lofstrom J. Interpolation Spaces. An Introduction.-Berlin: Springer, 1976.-207 p.
  • Capone C., Fiorenza A. On small Lebesgue spaces//J. Function Spaces and Appl.-2005.-Vol. 3.-P. 73-89.
  • Di Fratta G., Fiorenza A. A direct approach to the duality of grand and small Lebesgue spaces//Nonlinear Analysis: Theory, Methods and Applications.-2009.-Vol. 70, № 7.-P. 2582-2592.
  • Ding Y., Lin C.-C. Two-weight norm inequalities for the rough fractional integrals//Int. J. Math. Math. Sci.-2001.-Vol. 25, № 8.-P. 517-524.
  • Fiorenza A., Gupta B., Jain P. The maximal theorem in weighted grand Lebesgue spaces//Studia Math.-2008.-Vol. 188, № 2.-P. 123-133.
  • Fiorenza A. Duality and reflexivity in grand Lebesgue spaces//Collect. Math.-2000.-Vol. 51, № 2.-P. 131-148.
  • Fiorenza A., Karadzhov G. E. Grand and small Lebesgue spaces and their analogs//J. Anal. Appl.-2004.-Vol. 23, № 4.-P. 657-681.
  • Fiorenza A., Rakotoson J. M. Petits espaces de Lebesgue et leurs applications//C.R.A.S. t.-2001.-Vol. 333.-P. 1-4.
  • Greco L., Iwaniec T., Sbordone C. Inverting the $p$-harmonic operator//Manuscripta Math.-1997.-Vol. 92.-P. 249-258.
  • Iwaniec T., Sbordone C. On the integrability of the Jacobian under minimal hypotheses//Arch. Rational Mech. Anal.-1992.-Vol. 119.-P. 129-143.
  • Kokilashvili V., Meskhi A. A note on the boundedness of the Hilbert transform in weighted grand Lebesgue spaces//Georgian Math. J.-2009.-Vol. 16, № 3.-P. 547-551.
  • Kokilashvili V. Two-weighted estimates for some integral transforms in Lebesgue spaces with mixed norm and imbedding theorems//Georgian Math. J.-1994.-Vol. 1, № 5.-P. 495-503.
  • Kokilashvili V. On a progress in the theory of integral operators in weighted Banach function spaces//Function Spaces, Differential Operators and Nonlinear Analysis. Proc. of the Conf. held in Milovy, Bohemian-Moravian Uplands, May 28 -June 2, 2004.-Praha: Math. Inst. Acad. Sci. Czech Republick, 2005.-P. 152-175.
  • Kokilashvili V. Boundedness criterion for the Cauchy singular integral operator in weighted grand Lebesgue spaces and application to the Riemann problem//Proc. A. Razmadze Math. Inst.-2009.-Vol. 151.-P. 129-133.
  • Kokilashvili V. The Riemann boundary value problem for analytic functions in the frame of grand ${L^{p)$ spaces//Bull. Georgian Nat. Acad. Sci.-2010.-Vol. 4, № 1.-P. 5-7.
  • Kokilashvili V., Samko S. Boundedness of weighted singular integral operators on a Carleson curves in Grand Lebesgue spaces//ICNAAM 2010: Intern. Conf. Numer. Anal. Appl. Math.-Vol. 1281.-P. 490-493.
  • Kokilashvili V., Samko S. Boundedness of weighted singular integral operators in Grand Lebesgue spaces//Georg. Math. J.-2011.-Vol. 18, № 2.-P. 259-269.
  • Meskhi A. Criteria for the boundedness of potential operators in grand Lebesgue spaces.-arXiv:1007.1185.
  • Muckenhoupt B. Weighted norm inequalities for the Hardy maximal function//Trans. Amer. Math. Soc.-1972.-Vol. 165.-P. 207-226.
  • Perez C. Two weighted norm inequalities for Riesz potetials and uniform ${L^p$-weighted {Sobolev inequalities//Indiana Univ. Math. J.-1990.-Vol. 39, № 1.-P. 31-44.
  • Perez C. Two weighted inequalities for potetial and fractional type maximal operators//Indiana Univ. Math. J.-1994.-Vol. 43, № 2.-P. 663-683.
  • Sawyer E. T. A two weight weak type inequality for fractional integrals//Trans. Amer. Math. Soc.-1984.-Vol. 281, № 1.-P. 339-345.
  • Sawyer E. T., Weeden R. L. Weighted inequalities for fractional integrals on euclidean and homogeneous spaces//Amer. J. Math.-1992.-Vol. 114, № 4.-P. 813-874.
  • Samko S. G., Umarkhadzhiev S. M. On Iwaniec-Sbordone spaces on sets which may have infinite measure//Azerb. J. Math.-2011.-Vol. 1, № 1.-P. 67-84.
  • Samko S. G., Umarkhadzhiev S. M. On Iwaniec-Sbordone spaces on sets which may have infinite measure: addendum//Azerb. J. Math.-2011.-Vol. 1, № 2.-P. 143-144.
  • Stein E. M., Weiss G. Interpolation of operators with change of measures//Trans. Amer. Math. Soc.-1958.-Vol. 87.-P. 159-172.
  • Tord S. Weighted norm inequalities for {Riesz potentials and fractional maximal functions in mixed norm {Lebesgue spaces//Stud. Math.-1990.-Vol. 97, № 3.-P. 239-244.
Еще
Статья научная