On Borel's extension theorem for general Beurling classes of ultradifferentiable functions

Автор: Abanina Daria Aleksandrovna

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 1 т.9, 2007 года.

Бесплатный доступ

We obtain necessary and sufficient conditions under which general Beurling class of ultradifferentiable functions admits a version of Borel's extension theorem.

Ultradifferentiable functions, borel's extension theorem

Короткий адрес: https://sciup.org/14318202

IDR: 14318202

Список литературы On Borel's extension theorem for general Beurling classes of ultradifferentiable functions

  • Abanin A. V. On Whitney's extension theorem for spaces of ultradifferentiable functions//Math. Ann.-2001.-V. 320.-P. 115-126.
  • Abanin A. V. Banach spaces of test functions in generalized approach of Beurling-Bjorck.-Vladikavkaz: Vladikavkaz Scientific Center, 2004.-P. 16-33.-In Russian.
  • Abanin A. V., Filip'ev I. A. Analytic implementation of the duals of some spaces of infinitely differentiable functions//Sib. Math. J.-2006.-V. 47.-P. 485-500.-In Russian; English transl.: Sib. Math. J.-2006.-V. 47.-P. 397-409.
  • Abanina D. A. On Borel's theorem for spaces of ultradifferentiable functions of mean type//Results Math.-2003.-V. 44.-P. 195-213.
  • Abanina D. A. Absolutely representing systems of exponentials with imaginary exponents in ultrajet spaces of normal type and the extension of Whitney functions//Vladikavkaz. Math. J.-2005.-V. 7.-P. 3-15.-In Russian.
  • Boas R. P. Entire functions.-New York: Academic Press, 1954.-276 p.
  • Borel E. Sur quelques points de la theorie des fonctions//Ann. Sci. Ec. Norm. Super. 3 Ser.-1895.-V. 12.-P. 9-55.
  • Meise R., Taylor B. A. Whitney's extension theorem for ultradifferentiable functions of Beurling type//Ark. Mat.-1988.-V. 26.-P. 265-287.
  • Meise R., Vogt D. Einfuhrung in die Funktionalanalysis.-Braunschweig: Vieweg, 1992.-416 p.
Еще
Статья научная