On Borel's extension theorem for general Beurling classes of ultradifferentiable functions
Автор: Abanina Daria Aleksandrovna
Журнал: Владикавказский математический журнал @vmj-ru
Статья в выпуске: 1 т.9, 2007 года.
Бесплатный доступ
We obtain necessary and sufficient conditions under which general Beurling class of ultradifferentiable functions admits a version of Borel's extension theorem.
Ultradifferentiable functions, borel's extension theorem
Короткий адрес: https://sciup.org/14318202
IDR: 14318202
Список литературы On Borel's extension theorem for general Beurling classes of ultradifferentiable functions
- Abanin A. V. On Whitney's extension theorem for spaces of ultradifferentiable functions//Math. Ann.-2001.-V. 320.-P. 115-126.
- Abanin A. V. Banach spaces of test functions in generalized approach of Beurling-Bjorck.-Vladikavkaz: Vladikavkaz Scientific Center, 2004.-P. 16-33.-In Russian.
- Abanin A. V., Filip'ev I. A. Analytic implementation of the duals of some spaces of infinitely differentiable functions//Sib. Math. J.-2006.-V. 47.-P. 485-500.-In Russian; English transl.: Sib. Math. J.-2006.-V. 47.-P. 397-409.
- Abanina D. A. On Borel's theorem for spaces of ultradifferentiable functions of mean type//Results Math.-2003.-V. 44.-P. 195-213.
- Abanina D. A. Absolutely representing systems of exponentials with imaginary exponents in ultrajet spaces of normal type and the extension of Whitney functions//Vladikavkaz. Math. J.-2005.-V. 7.-P. 3-15.-In Russian.
- Boas R. P. Entire functions.-New York: Academic Press, 1954.-276 p.
- Borel E. Sur quelques points de la theorie des fonctions//Ann. Sci. Ec. Norm. Super. 3 Ser.-1895.-V. 12.-P. 9-55.
- Meise R., Taylor B. A. Whitney's extension theorem for ultradifferentiable functions of Beurling type//Ark. Mat.-1988.-V. 26.-P. 265-287.
- Meise R., Vogt D. Einfuhrung in die Funktionalanalysis.-Braunschweig: Vieweg, 1992.-416 p.
Статья научная