On combined nonstandard methods in functional analysis
Автор: Kusraev A.G., Kutateladze S.S.
Журнал: Владикавказский математический журнал @vmj-ru
Статья в выпуске: 1 т.2, 2000 года.
Бесплатный доступ
The main nonstandard tool-kits are known as infinitesimal analysis (Robinson's nonstandard analysis) and Boolean-valued analysis. Sharp distinctions between these two versions of nonstandard analysis in content and technique notwithstanding, many ways are open to their simultaneous application. One of the simplest approaches consists in successive application of different nonstandard methods. It is demonstrated that combining is often useful in settling the problems of functional analysis which stem mainly from the theory of vector lattices.
Короткий адрес: https://sciup.org/14318000
IDR: 14318000
Список литературы On combined nonstandard methods in functional analysis
- Kusraev A. G. and Kutateladze S. S. Nonstandard Methods of Analysis.-Novosibirsk: Nauka, 1990; Dordrecht: Kluwer, 1995.
- Kusraev A. G. and Kutateladze S. S. On combining nonstandard methods//Sibirsk. Mat. Zh.-1990.-V. 31, № 5.-P. 69-78.
- Kutateladze S. S. Monads of proultrafilters and extensional filters//Sibirsk. Mat. Zh.-1989.-V. 30, № 1.-P. 129-133.
- Kusraev A. G. and Kutateladze S. S. On nonstandard methods in functional analysis. In: Interaction between Functional Analysis, Harmonic Analysis and Probability.-Inc. New York etc.: Marcel Dekker, 1995.-P. 301-307.
- Kusraev A. G. and Kutateladze S. S. On combined nonstandard methods in the theory of positive operators//Matematychni Studii.-1997.-V. 7, № 1.-P. 33-40.
- Takeuti G. and Zaring W. M. Axiomatic Set Theory.-New York: Springer-Verlag, 1973.
- Gordon E. I. The reals in Boolean-valued models of set theory and K-spaces//Dokl. Akad. Nauk. SSSR.-1977.-V. 237, № 4.-P. 773-775.
- Aliprantis C. D. and Burkinshaw O. Positive Operators.-New York: Academic Press, 1985.
- Luxemburg W. A. J. and Zaanen A. C. Riesz Spaces.-Amsterdam-London: North-Holland, 1971.-V. 1.
- Kusraev A. G. Vector Duality and Its Applications.-Novosibirsk: Nauka, 1985.
- Loeb P. A nonstandard representation of measurable spaces, L_{\infty}, and L_{\infty}^*. In: Contributions to Nonstandard Analysis Luxemburg W. A. J. and Robinson A. Amsterdam-London: North-Holland, 1972.-P. 65-80.
- Kusraev A. G. and Malyugin S. A. Some Questions of the Theory of Vector Measures.-Novosibirsk: Sobolev Institute of Mathematics, 1988.
- Kusraev A. G. and Malyugin S. A. Atomic decomposition of vector measures.//Sibirsk. Mat. Zh.-1989.-V. 30, № 5.-P. 101-120.
- Kusraev A. G. and Malyugin S. A. Extension of finitely additive vector measures//Mat. Zametki.-1990.-V. 48, № 1.-P. 56-60.
- Kusraev A. G. On functional representation of type I AW*-algebras.//Sibirsk. Mat. Zh.-1991.-V. 32, № 2.-P. 78-88.
- Kusraev A. G. Boolean-valued analysis and JB-algebras//Sibirsk. Mat. Zh.-1994.-V. 35, № 1.-P. 124-134.