On conservation laws in affine toda systems

Автор: Nirova Marina Sefovna

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 1 т.13, 2011 года.

Бесплатный доступ

With the help of certain matrix decomposition and projectors of special forms we show that non-Abelian Toda systems associated with loop groups possess infinite sets of conserved quantities following from essentially different conservation laws.

Non-abelian toda systems, loop groups, symmetries and conservation laws.

Короткий адрес: https://sciup.org/14318339

IDR: 14318339

Список литературы On conservation laws in affine toda systems

  • Arnold V. I. Mathematical methods of classical mechanics.-Berlin: Springer-Verlag, 1989.-536 p.-(Graduate Texts in Mathematics).
  • Faddeev L. D., Takhtajan L. A. Hamiltonian methods in the theory of solitons.-Berlin: Springer-Verlag, 1987.-592 p.-(Springer Series in Soviet Math.).
  • Zakharov V. E., Shabat A. B. Integration of nonlinear equations of mathematical physics by the inverse scattering method. II//Funkt. Anal. & Pril.-1979.-Vol. 13.-P. 13-22.-(in Russian).
  • Leznov A. N., Saveliev M. V. Group-theoretical methods for the integration of nonlinear dynamical systems//Progress in Physics.-Berlin: Birkhauser Verlag, 1992.-Vol. 15.
  • Nirov Kh. S., Razumov A. V. W-algebras for non-Abelian toda systems//J. of Geometry and Physics.-2003.-Vol. 48.-P. 505-545.-[arXiv:hep-th/0210267].
  • Mikhailov A. V., Shabat A. B., Yamilov R. I. Symmetry approach to classification of nonlinear equations. Complete lists of integrable systems//Russ. Math. Surv.-1987.-Vol. 42.-P. 1-63.
  • Mikhailov A. V., Shabat A. B., Sokolov V. V. The symmetry approach to classification of integrable equations//What is Integrability?-Berlin: Springer-Verlag, 1991.-P. 115-184.
  • Mikhailov A. V. The reduction problem and the inverse scattering method//Physica.-1981.-Vol. 3D.-P. 73-117.
  • Nirov Kh. S., Razumov A. V. On Z-gradations of twisted loop Lie algebras of complex simple Lie algebras//Commun. Math. Phys.-2006.-Vol. 267.-P. 587-610.-[arXiv:math-ph/0504038].
  • Semenov-Tian-Shansky M. A. Integrable systems and factorization problems//Factorization and Integrable Systems.-Boston: Birkhauser, 2003.-P. 155-218.-[arXiv:nlin.SI/0209057].
  • Razumov A. V., Saveliev M. V. Lie algebras, geometry and Toda-type systems.-Cambridge: Cambridge University Press, 1997.
  • Razumov A. V., Saveliev M. V. Maximally non-Abelian Toda systems//Nucl. Phys.-1997.-Vol. B494.-P. 657-686.-[arXiv:hep-th/9612081].
  • Razumov A. V., Saveliev M. V. Multi-dimensional Toda-type systems//Theor. Math. Phys.-1997.-Vol. 112.-P. 999-1022.-[arXiv:hep-th/9609031].
  • Nirov Kh. S., Razumov A. V. On classification of non-Abelian Toda systems//Geometrical and Topological Ideas in Modern Physics.-Protvino: IHEP, 2002.-P. 213-221.-[arXiv:nlin.si/0305023].
  • Nirov Kh. S., Razumov A. V. Toda equations associated with loop groups of complex classical Lie groups//Nucl. Phys.-2007.-Vol. B782.-P. 241-275.-[arXiv:math-ph/0612054]
  • Nirov Kh. S., Razumov A. V. Z-graded loop Lie algebras, loop groups, and Toda equations//Theor. Math. Phys.-2008.-Vol. 154, \No 3.-P. 385-404.-[arXiv:0705.2681].
Еще
Статья научная