On exponential stability for linear difference equations with delays

Бесплатный доступ

The article gives an overview of recent results on the stability of finite-difference equations with delay. All results are compared with known signs of exponential stability of linear difference equations. The results are obtained using the Bohl-Perron theorem and comparing the equation under study with an equation for which the Cauchy function is positive. The Bohl-Perron theorem allows us to reduce the question of the exponential stability of a linear difference equation with delay to the solvability of an operator equation in one of the functional infinite-dimensional spaces. That is, in fact, to an estimate of the norm or the spectral radius of a bounded linear operator in this space. For this estimation, different difference inequalities are used. One way to obtain such inequalities is to evaluate the fundamental solution in the event that this solution is positive.

Еще

Linear difference equations, exponential stability, bohl-perron theorem, comparison theorems

Короткий адрес: https://sciup.org/147232200

IDR: 147232200   |   DOI: 10.14529/ctcr180304

Список литературы On exponential stability for linear difference equations with delays

  • Berezansky L., Braverman E. On Bohl-Perron Type Ttheorems for Linear Difference Equations // Funct. Differ. Equ., 2004, vol. 11, no. 1-2, pp. 19-28.
  • Berezansky L., Braverman E. On Exponential Dichotomy, Bohl-Perron Type Theorems and Stability of Difference Equations // J. Math. Anal. Appl., 2005, vol. 304, pp. 511-530. DOI: 10.1016/j.jmaa.2004.09.042
  • Berezansky L., Braverman E. On Existence of Positive Solutions for Linear Difference Equations with Several Delays // Adv. Dyn. Syst. Appl., 2006, vol. 1, no. 1, pp. 29-47.
  • Berezansky L., Braverman E., Liz E. Sufficient Conditions for the Global Stability of Nonautonomous Higher Order Difference Equations // J. Difference Equ. Appl., 2005, vol. 11, no. 9, pp. 785-798. DOI: 10.1080/10236190500141050
  • Berezansky L., Braverman E. On Exponential Dichotomy for Linear Difference Equations with Bounded and Unbounded Delay // Proceedings of the Conference on Differential and Difference Equations & Applications Melbourne, Florida, August 1-5, 2005. Edited by Ravi P. Agarwal and Kanishka Perera, Hindawi Publishing Corporation, 2006, pp. 169-178.
  • Berezansky L., Braverman E., Kravets O. Nonoscillation of Linear Delay Difference Equations with Positive and Negative Coefficients // J. Difference Equ. Appl., 2008, vol. 14, no. 5, pp. 495-511.
  • DOI: 10.1080/10236190701692273
  • Elaydi S., Periodicity and Stability of Linear Volterra Difference Systems // J. Math. Anal. Appl., 1994, vol. 181, no. 2, pp. 483-492.
  • DOI: 10.1006/jmaa.1994.1037
  • Elaydi S. and Murakami S. Uniform Asymptotic Stability in Linear Volterra Difference Equations // J. Difference Equ. Appl., 1998, vol. 3, no. 3-4, pp. 203-218.
  • DOI: 10.1080/10236199808808097
  • Erbe L.H., Xia H., Yu J.S., Global Stability of a Linear Nonautonomous Delay Difference Equation // J. Difference Equ. Appl., 1995, vol. 1, no. 2, pp. 151-161.
  • DOI: 10.1080/10236199508808016
  • Gyӧri I., Hartung F. Stability in Delay Perturbed Differential and Difference Equations // Fields Inst. Commun., 2001, vol. 29, pp. 181-194.
  • DOI: 10.1090/fic/029/14
  • Gyӧri I. and Ladas G. Oscillation Theory of Delay Differential Equations // Clarendon Press, Oxford, 1991. 378 p.
  • Gyӧri I., Ladas G., Vlahos P.N. Global Attractivity in a Delay Difference Equation // Nonlinear Anal. TMA, 1991, vol. 17, no. 5, pp. 473-479.
  • DOI: 10.1016/0362-546x(91)90142-n
  • Kipnis M.M., Komissarova D.A. A Note of Explicit Stability Conditions of Autonomous Higher Order Difference Equation // J. Difference Equ. Appl., 2007, vol. 13, no. 5, pp. 457-461.
  • DOI: 10.1080/10236190601132933
  • Kocić V.L., Ladas G. Global Behavior of Nonlinear Difference Equations of Higher Order with Applications // Math. Appl., vol. 256. Kluwer Academic, Dordrecht, 1993. 240 p.
  • DOI: 10.1007/978-94-017-1703-8
  • Krause U., Pituk M. Boundedness and Stability for Higher Order Difference Equations // J. Differ. Equations Appl., 2004, vol. 10, pp. 343-356.
  • DOI: 10.1080/1023619031000115377
  • Liz E. On Explicit Conditions for the Asymptotic Stability of Linear Higher Order Difference Equations // J. Math. Anal. Appl., 2005, vol. 303, pp. 492-498.
  • DOI: 10.1016/j.jmaa.2004.08.048
  • Liz E., Ivanov A., Ferreiro J.B., Discrete Halanay-Type Inequalities and Applications // Nonlinear Anal., 2003, vol. 55, pp. 669-678.
  • DOI: 10.1016/j.na.2003.07.013
  • Liz E., Pituk M. Asymptotic Estimates and Exponential Stability for Higher-Order Monotone Difference Equations // Adv. Difference Equ., 2005, no. 1, pp. 41-55.
  • DOI: 10.1155/ADE.2005.41
  • Malygina V.V., Kulikov A.Y. On Precision of Constants in Some Theorems on Stability of Difference Equations // Func. Differ. Equ., 2008, vol. 15, no. 3-4, pp. 239-249.
  • Pituk M. Global Asymptotic Stability in a Perturbed Higher Order Linear Difference Rquation // Comput. Math. Appl., 2003, vol. 45, pp. 1195-1202.
  • DOI: 10.1016/S0898-1221(03)00084-1
  • Tang X.H., Jiang Z. Asymptotic Behavior of Volterra Difference Equation // J. Difference Equ. Appl., 2007, vol. 13, no. 1, pp. 25-40.
  • DOI: 10.1080/10236190601008810
  • Tkachenko V. and Trofimchuk S. A Global Attractivity Criterion for Nonlinear Non-Autonomous Difference Equations // J. Math. Anal. Appl., 2006, vol. 322, no. 2, pp. 901-912.
  • DOI: 10.1016/j.jmaa.2005.09.052
  • Yu J.S. Asymptotic Stability for a Linear Difference Equation with Variable Delay, Advances in Difference Equations, II // Comput. Math. Appl. 36, 1998, no. 10-12, pp. 203-210.
  • DOI: 10.1016/s0898-1221(98)80021-7
  • Zhang B.G., Tian C.J., Wong P.J.Y. Global Attractivity of Difference Equations with Variable Delay // Dynam. Contin. Discrete Impuls. Systems, 1999, vol. 6, no. 3, pp. 307-317.
Еще
Статья научная