On non-commutative ergodic type theorems for free finitely generated semigroups
Автор: Grabarnik Genady Ya., Katz Alexander A., Shwartz Larisa A.
Журнал: Владикавказский математический журнал @vmj-ru
Статья в выпуске: 1 т.9, 2007 года.
Бесплатный доступ
In the paper the authors generalize Bufetov's Ergodic Type Theorems to the case of the actions of free finitely generated semigroups on von Neumann algebras.
Короткий адрес: https://sciup.org/14318204
IDR: 14318204
Список литературы On non-commutative ergodic type theorems for free finitely generated semigroups
- Akcoglu M. A. A pointwise ergodic theorem in L_p-spaces//Canad. J. Math.-1975.-V. 27, № 5.-P. 1075-1082.
- Bufetov A. I. Ergodic theorems for actions of several mappings//Uspekhi Math. Nauk.-1999.-V. 54, № 4 (328).-P. 159-160; Translation in Russian Math. Surveys.-1999.-V. 54, № 4.-P. 835-836.
- Bufetov A. I. Operator ergodic theorems for actions of free semigroups and groups//Funktsional. Anal. i Prilozhen.-2000.-V. 34, № 4.-P. 1-17; translation in Funct. Anal. Appl.-2000.-V. 34, № 4.-P. 239-251.
- Dixmier J. Les algebres doperateurs dans lespace hilbertien (algebres de von Neumann). Reprint of the second (1969) edition. Les Grands Classiques Gauthier-Villars.-Paris: Editions Jacques Gabay, 1996.-367 p.-In French.
- Goldstein M. Sh. Theorems of almost everywhere convergence in von Neumann algebras//J. Oper. Theory.-1981.-V. 6.-P. 233-311.-In Russian.
- Goldstein M. Sh., Grabarnik G. Ya. Almost sure convergence theorems in von Neumann algebras//Israel J. Math.-1991.-V. 76, № 1/2.-P. 161-182.
- Grabarnik G. Ya., Katz A. A., Shwartz L. Ergodic type theorems for actions of finitely generated semigroups on von neumann algebras. I//Proceedings of the 3rd Annual Hawaii International Conference on Statistics. Mathematics and Related Fields.-Honolulu, 2004.-P. 1-15.
- Grabarnik G. Ya., Katz A. A., Shwartz L. Ergodic type theorems for actions of finitely generated semigroups on von neumann algebras. II//Proceedings of the 4th Annual Hawaii International Conference on Statistics. Mathematics and Related Fields.-Honolulu, 2005.-P. 1-8.
- Grabarnik G. Ya., Katz A. A. On Neveu decomposition and ergodic type theorems for semi-finite von Neumann algebras//Vladikavk. Math. J.-2003.-V. 5, № 2.-P. 5-9.
- Grabarnik G. Ya., Katz A. A. Ergodic type theorems for finite von Neumann algebras//Israel J. of Math.-1995.-V. 90.-P. 403-422.
- Grabarnik G. Ya., Katz A. A. On multiparametric superadditive stochastic ergodic theorem for semi-finite von Neumann algebras, in preparation.
- Grigorchuk R. I. Individual ergodic theorem for actions of free groups//Proceedings of the Tambov workshop in the theory of functions.-1986.-P. 3-15.
- Grigorchuk R. I. Ergodic theorems for actions of free groups and free semigroups//Math. Notes.-1999.-V. 65, № 5.-P. 654-657.-In Russian; translation from Math. Zametki.-1999.-V. 65, № 5.-P. 779-783.-In English.
- Guivarch Y. Generalisation dun theoreme de von Neumann//C. R. Acad. Sci. Paris Ser. A-B.-1969.-V. 268.-P. A1020-A1023.-In French.
- Jajte R. Strong limit theorem in noncommutative probability.-Berlin etc.: Spring, 1985.-162 p. (Lecture Notes in Math.; 1110).
- Hajian A., Kakutani S. Weakly wandering sets and invariant measures//Transactions of the American Mathematical Society.-1964.-V. 110.-P. 131-151.
- Kakutani S. Random ergodic theorems and Markoff processes with a stable distribution//Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950.-P. 247-261.-Berkeley and Los Angeles: University of California Press, 1951.
- Katz A. A. Ergodic type theorems in von Neumann algebras.-Pretoria, University of South Africa, 2001.-P. 84.-(Ph. D. Thesis University of South Africa).
- Kingman J. F. C. Subadditive ergodic theory//Annals of Probability. 1.-1973.-P. 883-909.
- Kovacs I., Szucs J. Ergodic type theorem in von Neumann algebras//Acta Scientiarum Mathematicarum (Szeged).-1966.-V. 27-P. 233-246.
- Krengel U. Ergodic theorems. With a supplement by Antoine Brunel. de Gruyter Studies in Mathematics, 6.-Berlin: Walter de Gruyter & Co, 1985.-357 p.
- Lance E. C. Ergodic theorems for convex sets and operator algebras//Inventiones Mathematicae.-1976.-V. 37.-P. 201-214.
- Lorch E. R. Means of iterated transformations in reflexive vector spaces//Bull. Amer. Math. Soc.-1938.-V. 45.-P. 945-947.
- Nevo A. Harmonic analysis and pointwise ergodic theorems for noncommuting transformations//J. Amer. Math. Soc.-1994.-V. 7, № 4.-P. 875-902.
- Nevo A., Stein E. M. A generalization of Birkhoff's pointwise ergodic theorem//Acta Math.-1994.-V. 173, № 1.-P. 135-154.
- Oseledec V. I. Markov chains, skew products and ergodic theorems for > dynamic systems//Teor. Verojatnost. i Primenen.-1965.-V. 10.-P. 551-557.-In Russian.
- Pisier G., Xu Q. Non-Commutative L_p-Spaces, Handbook of the Geometry of Banach Spaces.-North-Holland, Amsterdam, 2003.-V. 2.-P. 1459-1517.
- Segal I. E. A noncommutative extension of abstract integration//Archiv der Mathematik.-1953.-V. 57.-P. 401-457.
- Sinai Ya. G., Anshelevich V. V. Some problems of noncommutative ergodic theory//Uspekhi Math. Nauk.-1976.-V. 32.-P. 157-174.
- Vershik A. M. Numerical characteristics of groups and relations between them//Zap. Nauchn. Semin. POMI.-1999.-V. 256.-P. 5-18.
- Viennot G. X. Heaps of pieces. I. Basic definitions and combinatorial lemmas. Graph theory and its applications: East and West (Jinan, 1986).-P. 542-570.-New York: Acad. Sci., 1989.-(Ann. New York Acad. Sci.; 576).
- Yeadon F. J. Ergodic theorems for semi-finite von Neumann algebras, I//Journal of the London Mathematical Society.-1977.-V. 16.-P. 326-332.
- Yeadon F. J. Ergodic theorems for semi-finite von Neumann algebras, II//Mathematical Proceedings of the Cambridge Philosophical Society.-1980.-V. 88.-P. 135-147.
Статья научная