О нормальных подгруппах группового представления дерева Кэли
Автор: Хайдаров Ф. Х.
Журнал: Владикавказский математический журнал @vmj-ru
Статья в выпуске: 4 т.25, 2023 года.
Бесплатный доступ
Мера Гиббса играет важную роль в статистической механике. На дереве Кэли для описания периодических мер Гиббса для моделей статистической механики нам нужны подгруппы группового представления дерева Кэли. Нормальная подгруппа группового представления дерева Кэли сохраняет свойство инвариантности, которое является важным инструментом при поиске мер Гиббса. В~связи с этим полное описание нормальных подгрупп группового представления дерева Кэли является важной проблемой теории меры Гиббса. Например, в [1, 2] дано полное описание нормальных подгрупп индексов четыре, шесть, восемь и десять для группового представления дерева Кэли. Настоящая работа является обобщением этих работ, т. е. в ней для любого нечетного простого числа p дается характеризация нормальных подгрупп индексов 2n, n∈{p,2p} и 2i,i∈N, группового представления дерева Кэли.
Дерево кэли, gk-группа, подгруппы конечного индекса, абелева группа, гомоморфизм
Короткий адрес: https://sciup.org/143180937
IDR: 143180937 | DOI: 10.46698/l0184-0874-2706-y