On normal subgroups of the group representation of the Cayley tree

Автор: Haydarov Farhod H.

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 4 т.25, 2023 года.

Бесплатный доступ

Gibbs measure plays an important role in statistical mechanics. On a Cayley tree, for describing periodic Gibbs measures for models in statistical mechanics we need subgroups of the group representation of the Cayley tree. A normal subgroup of the group representation of the Cayley tree keeps the invariance property which is a significant tool in finding Gibbs measures. By this occasion, a full description of normal subgroups of the group representation of the Cayley tree is a significant problem in Gibbs measure theory. For instance, in [1, 2] a full description of normal subgroups of indices four, six, eight, and ten for the group representation of a Cayley tree is given. The present paper is a generalization of these papers, i. e., in this paper, for any odd prime number p, we give a characterization of the normal subgroups of indices 2n, n∈{p,2p} and 2i,i∈N, of the group representation of the Cayley tree.

Еще

Cayley tree, gk-group, subgroups of finite index, abelian group, homomorphism

Короткий адрес: https://sciup.org/143180937

IDR: 143180937   |   DOI: 10.46698/l0184-0874-2706-y

Список литературы On normal subgroups of the group representation of the Cayley tree

  • Haydarov, F. H. New Normal Subgroups for the Group Representation of the Cayley Tree, Lobachevskii Journal of Mathematics, 2018, vol. 39, no. 2, pp. 213-217. DOI: 10.1134/S1995080218020142.
  • Rozikov, U. A. and Haydarov, F. H. Normal Subgroups of Finite Index for the Group Represantation of the Cayley Tree, TWMS Journal of Pure and Applied Mathematics, 2014, vol. 5, no. 2, pp. 234-240.
  • Cohen D. E. and Lyndon, R. C. Free Bases for Normal Subgroups of Free Groups, Transactions of the American Mathematical Society, 1963, vol. 108, pp. 526-537.
  • Normatov, E. P. and Rozikov, U. A. A Description of Harmonic Functions via Properties of the Group Representation of the Cayley Tree, Mathematical Notes, 2006, vol. 79, pp. 399-407. DOI: 10.1007/s11006-006-0044-4.
  • Rozikov, U. A. Gibbs Measures on a Cayley Tree, Singapore, World Scientific, 2013. DOI: 10.1142/8841.
  • Levgen, V. B., Natalia, V. B., Said, N. S. and Flavia, R. Z. On the Conjugacy Problem for Finite-State Automorphisms of Regular Rooted Trees, Groups, Geometry, and Dynamics, 2013, vol. 7, no. 2, pp. 323-355. DOI: 10.4171/GGD/184.
  • Rozikov, U. and Haydarov, F. Invariance Property on Group Representations of the Cayley Tree and Its Applications, Results in Mathematics, 2022, vol. 77(6), Article no. 241. DOI: 10.1007/s00025-022-01771-9.
  • Rozikov, U. A. and Haydarov F. H. Four Competing Interactions for Models with an Uncountable Set of Spin Values on a Cayley Tree, Theoretical and Mathematical Physics, 2017, vol. 191, pp. 910-923. DOI: 10.1134/S0040577917060095.
  • Rozikov, U. A. and Haydarov, F. H. Periodic Gibbs Measures for Models with Uncountable Set of Spin Values on a Cayley Tree, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 2015, vol. 18, no. 1, pp. 1-22. DOI: 10.1142/S021902571550006X.
  • Haydarov, F. H. and Ilyasova, R. A. On Periodic Gibbs Measures of the Ising Model Corresponding to New Subgroups of the Group Representation of a Cayley Tree, Theoretical and Mathematical Physics, 2022, vol. 210, pp. 261-274. DOI: 10.1134/S0040577922020076.
  • Malik, D. S, Mordeson, J. N. and Sen, M. K. Fundamentals of Abstract Algebra, McGraw-Hill Com., 1997.
  • Rose, H. E. A Course on Finite Groups, Springer Science and Business Media, 2009.
Еще
Статья научная