On one equation of internal waves
Бесплатный доступ
The Cauchy-Dirichlet problem is considered for the equation of internal waves. This equation has various applications in hydrodynamics, for example, in the study of waves in the ocean. The article provides an analytical study of one equation of internal waves. This equation characterizes propagation of waves in a homogeneous incompressible stratified fluid. The equation of internal waves is reduced to an abstract semilinear Sobolev type equation of the second order. The study of the equation is carried out within the framework of the theory of polynomially bounded operator pencils. In this work, we construct propagators for the equation of internal waves. Also, we present two model examples, where the domain D is represented in the form of a cylinder and a parallelepiped. The result of the work is an analytical solution to the considered cases for the equation of internal waves.
Internal wave equation, polynomially bounded pencils of operators, sobolev-type equation, propagators
Короткий адрес: https://sciup.org/147232860
IDR: 147232860 | DOI: 10.14529/mmph210202
Текст научной статьи On one equation of internal waves
Equation of internal waves in a homogeneous incompressible non-rotating fluid is described by the Poincare equation
^ u# + N 2 ( u + U yy ) = 0, (1)
where N 2 is buoyancy frequency. Earlier, the equation was considered in the works of S.A. Gabov and P.A. Krutitsky [1] when working with the excitation of nonstationary internal waves in a two-layer model of a stratified fluid, the behavior of the solution at a large time was studied. Yu.D. Pletner [2] studied some initial-boundary value problems and the fundamental solution to the equation of internal waves in the case of an incompressible exponentially stratified fluid. L.V. Perova and A.G. Sveshnikov [3] generalized the works of the authors devoted to the propagation of small perturbations in stratified and rotating fluids. The equation of internal waves can be written in another form, for example, given in [4]. Interest in the study of problems with the equation of internal waves is still topical. This problem is quite interesting from a mathematical point of view, since the solution to the Cauchy-Dirichlet problem is obtained within the framework of the theory of polynomially bounded operator pencils.
Let D be a bounded domain from R3 with a smooth boundary dD. Consider the Dirichlet condition u ( x, y, z, t) = 0, ( x, y, z, t )e6D x R (2)
and the Cauchy condition
u ( x,y,z ,0 ) = u0,u t ( x,y , z ,0 ) = u 1 . (3)
The solution to problem (1)–(3) is found in the framework of the theory of Sobolev-type equations. In this paper, we use methods based on the theory of semigroups (groups) of operators [5, 6]. The monographs [6, 7] present the results of studying Sobolev-type equations and equations that are not solved with respect to the high-order derivative. In the paper [7] different classes of Sobolev-type equations are introduced and, by structure, equation (1) is considered to be a simple Sobolev-type equation.
-
2. (A, p)-bounded Operators
Let U,F be Banach spaces and the operators A,B0,B1,^,Bn-1 eL(F;U) . Denote by B a pencil formed by the operators B0, B1,..., Bn-1. The sets pA (B ) = {^e C: (^A - ^-1 Bn _, -... - ^Bx - B0)- e L (F; U)} and a A (B) = C \ pA (B) are called an A-resolvent set and an A-spectrum of the pencil B , respectively. The operator-function of a complex variable RA (B) = (Ц A - Ц 1 Bn- -... - цР1 - B0 ) with the domain pA (B) is called an A-resolvent of the pencil B .
Definition 1. [9] The operator pencil B is called polynomially bounded with respect to an operator A (or polynomially A -bounded) if Ba e R + Vц e C(|Ц > a) ^ (R^ (B) e L(F;U)) .
Remark 1. [9] If there exists an operator A -1 e L ( F ; U ) ) then the pencil B is polynomially A -bounded.
To decompose the spaces U,F into a direct sum of subspaces, it is necessary to construct projectors. Condition (4) is necessary for the existence of projectors [8].
J ^R A ( B ) = O, k = 0,1,..., n -2, (4)
Y where the circuit у = {цe C: | ц| = r > a}.
Lemma 1. [9] Let the operator pencil B be polynomially A -bounded and condition (4) be fulfilled. Then the operators
P = 1 J R A ( B ц -1 Ad ц Q = < J ц -1 AR A ( B d " П Lnt
У у are projectors in the spaces U and F respectively.
Denote U 0 = ker P, F 0 = ker Q, U 1 = im P , F 1 = im Q . According to Lemma 1,
U = U 0 ® U 1 , F = F 0 Ф F 1. Denote by Ak ( B l ) a restriction of the operator A ( B l ) on Uk ( Fk ) , k = 0,1; l = 0,1,..., n - 1.
Theorem 1. [9] Let the operator pencil B be polynomially A -bounded and condition (4) be fulfilled. Then
-
( i ) Ak e L ( uk , Fk ) , k = 0,1;
-
( ii ) B l e L ( uk , Fk ) , k = 0,1, l = 0,1,..., n - 1;
-
( iii ) the operator ( A 1 ) e L ( u 1, F 1 )
exists;
(iv) the operator ( B 0 ) e L ( u 0, F 0 ) exists.
Using Theorem 1, construct the
operators:
H 0 = ( B 0 0 ) -1 A 0 e L ( U 0 ) ,
Ц _ / D 0 A D0 T (T T 0 A IT _ / r>0 A D0 T It J 0 A Onrl
H 1 = ( B 0 ) B 1 e L ( U ) ,.'., H n - 1 = ( B 0 ) Bn - 1 e L ( U ) and
C _ ( J 1 A D1 T (т Г1 A C _ ( 1 A D1 T (т Г1 A C _ 1 J1 A D1 c T (f T 1 A
^ 0 = ( A ) B 0 e L ( U ) , ^ 1 = ( A ) B 1 e L ( U ) ,—, S n - 1 = ( A ) B n - 1 e L ( U ) •
Definition 2. [9] Define the family of operators { Kvq, K ^,..., K ^n } as follows:
-
K 0 = O, s ^ n , K у = I, 1 t-^2 nn
K1 = H 0 , K1 = - H 1 ,..., K1 = - H s - 1 ,..., K1 = H n - 1 ,
-
1 j^ n J^2 j^1 nn s - 1 -1 nn s^s j^ n -1 nn
Kq Kq - 1 H 0 , Kq Kq - 1 Kq - 1 H 1 , ^ , K q Kq - 1 Kq - 1 H s - 1 , ^ , Kq Kq - 1 Kq - 1 H n - 1 , q 1,2,...
The A -resolvent of the pencil B can be represented by the Laurent series
- 1 -^ - 1
q = 0
q
+ 2 Ц q ( M - 1 S n - 1 + ... + M S + S 0 ) LXQ.
q = 1
Definition 3. [9] The point ^ is called
-
(i) a removable singularity of an A -resolvent of the pencil B , if K = O, s = 1,2,..., n ;
-
(ii) a pole of the order p e N of an A -resolvent of the pencil B , if 3 p : Ks p^ O, s = 1,2,..., n, but K p + 1 = O, s = 1,2,..., n ;
-
(iii) an essential singularity of an A -resolvent of the pencil B , if K qn^ О qJq e N .
-
3. Abstract Problem
Further, for brevity, a removable singularity of an A -resolvent of the pencil B is called a pole of the order 0. If the operator pencil B is polynomially A -bounded and the point ^ is a pole of the order p e {0} u N of an A -resolvent of the pencil B , then the operator pencil B is called polynomially ( A , p )-bounded.
Consider the Cauchy problem u (0) = u0, ut (0) = u1
for the second-order Sobolev-type equation
Autt = B1ut + B0u.(6)
Operator-functions U k t , k = 0, 1, of the form
U0 = ^ (RM? (B)(mA - B1)e^dM,(7)
2 n i
Y
U = J RM (B) AeMtdM(8)
Y are propagators. Here the circuit y e C bounds a domain containing the A-spectrum of the operator pencil B . The solution to problem (5), (6) in terms of the theory of degenerate groups was obtained in [8], under the condition that the operator pencil B is polynomially bounded with respect to the operator A.
Theorem 2. [10] Let the operator pencil B be polynomially A-bounded, condition (4) be fulfilled, and ^ be a pole of the order p e {0} u N of the A -resolvent of B. There exists a unique solution u e C” (IR ,U) to problem (5), (6) of the form u (t) = U1 u1 + U0u0 , (9)
where u k e im U 1 0 = im U 0 , k = 0,1,im U 1 0 and im U 0 is a subspace in U .
-
4. Internal Wave Equation
Consider the cases when the domain D is a parallelepiped or a cylinder. Let the domain D = [0, a ] x [0, b ] x [0, c ] c R 3 be the parallelepiped. Problem (1)-(3) can be reduced to Cauchy problem
-
(5 ) for equation (6).
Introduce the spaces U = W ^ + 2 ( D ) , F = W l ( D ) and define the operators in the given spaces
Л2 Л2 Л2
a = ^ + ^ + ^ , B = O, B o =- N 2
d x2 d y 2 d z 2 1 0
' d 2 d 2 ^ vd x 2 d y 2 v
For any l e {0} u N , the operators
A , B 1 ,B 0 e L ( U , F ) .
Define
- ^kmm , n = — ( n k/a ) 2 - ( n m/b ) 2 - ( n n/c ) 2 to be the eigenvalues of the Dirichlet problem for the Laplace operator. Denote by ^ k , m , n = sin ( n kx/a ) sin ( n my/b ) sin ( n nz/c ) the orthogonal eigenfunctions that correspond to { - 2 ^ , m , n }in the sense of the scalar product in L 2 ( D ) .
Since {Фк,m,nI c Cда(D), then да _ _
P A — ^ B 1 — B 0 — E ^— p ^ k , m , n + N ^ k,m J < ф к,m , n , * > ф к,m,n к , m, n — 1
where B 0 ф kmn — —Лk mг фk mn, and < •,• > is the inner product in L 2 ( D ) . Construct the equation to determine the A -spectrum:
д 2 2, ^2.2 _n „1,2 _ N4 , m .
—.
^ к , m , n p + N ^ к , m 0, р к , m,n ± II ~ i .
у Лк, m , n
The A -spectrum a A ( В ) — { p ^2 } is bounded, because pOmn | < N . Since the operator A is continuously invertible in the given spaces, then condition (4) is satisfied. As a result, the conditions of Lemma 1 hold.
Construct propagators by formulas (7), (8) as follows:
да
U0u0 — E cos к, m, n—1
N t < фк, m, n , U 0 > фк, m, n *> N^1, m U1u1— E / 2 ’ sin к, m, n—1 J Лк, m, n N^m к, m L 2 v/Lк, m, n t < фк,mn, , m, n• By Theorem 2, the solution to problem (1)–(3) has the form да u(x,y,z,t)—Ecos к, m, n—1 , v^ N^-к, m • +^ TT=sin к,m,n—1а^к, m, n NO, m lb 2 \//Lк, m, n t < Фк. , m, n , U 0 > фк, m, n + N^m , m v/Lк, m, n , m, n• Now consider the case when the domain D is a cylinder. Similarly, as in the case of the parallelepiped, problem (1)-(3) can be reduced to Cauchy problem (5) for equation (6). Use the operators A, B1, B0 of the form d2 1 d 1 d d2 + + dr2 r dr r2 дф2 • 9r2 r dr r2дф2 dz2 Write down the equation to determine points of the A-spectrum: p2((^кn ))2+ (nml )2) + N2(^кn)) — 0, where В0фк,m,n= v(n')ф>(с,m,n and (•,•) is the scalar product in L2(D). We get the A-spectrum of the form P^m,n— ±(N^In74(^кn))2 +Wl)2)i• Let us construct propagators according to formulas (7), (8) as follows: U0u 0 — Nv( n) да E cos к, m, n—1 t< фк, m, n ,U 0 > фк, m, n , да к, m, n—1 --П-----sin Nvi"1 NV1 n * (V^Tinm/)7 t< фк, m, n , U1 > фк, m, n • By Theorem 2, the solution to problem (1)–(3) has the form « u ( x, y, z, t )= к, m, n=1 nV ”) . kt V 4 < фк, m, n u 0 > Фк, m, n+ ^ + z к, m, n=1 ----------Гл-------sin N^k”) ■ k t V4^Vk”))2 + (nmll)2> < фк, m, n ’ u1 > фк, m, n • As a result of the work, we obtain solutions to initial-boundary value problem (2)–(3) in a closed form on the considered domains for equation of internal waves (1).
Список литературы On one equation of internal waves
- Габов, С.А. О малых колебаниях отрезка, помещенного на границу раздела двух стратифицированных жидкостей / Габов С.А., Крутицкий П.А. // Ж. вычисл. матем. и матем. физ. - 1989. - Т. 29, № 4. - С. 554-564.
- Плетнер, Ю.Д. Фундаментальное решение уравнения внутренних волн и некоторые начально-краевые задачи / Ю.Д. Плетнер // Ж. вычисл. матем. и матем. физ. - 1991. - Т. 31, № 4. - С. 592-604.
- Перова, Л.В. О распространении возмущений, возбуждаемых в жидкостях движущимися источниками / Л.В. Перова, А.Г. Свешников // Ж. вычисл. матем. и матем. физ. - 2010. - Т. 50, № 12. - С. 2223-2232.
- Соболев, С.Л. Об одной новой задаче математической физики / С.Л. Соболев // Изв. АН СССР. Сер матем. - 1954. - Т. 18, № 1. - С. 3-50.
- Васильев, В.В. Полугруппы операторов, косинус оператор-функции и линейные дифференциальные уравнения / В.В. Васильев, С.Г. Крейн, С.И. Пискарев // Итоги науки и техн. Сер. Мат. анал., ВИНИТИ - 1990. - Вып. 28. - C. 87-202.
- Свиридюк, Г.А. Линейные уравнения соболевского типа / Г.А. Свиридюк, В.Е. Федоров. - Челябинск, 2003. - 179 с.
- Демиденко Г.В. Уравнения и системы, не разрешенные относительно старшей производной / Г.В. Демиденко, С.В. Успенский. - Новосибирск: Научная книга, 1998. - 436 с.
- Замышляева, А.А. Фазовое пространство уравнения соболевского типа высокого порядка / А.А. Замышляева // Известия Иркутского государственного университета. - 2011. - Т. 4, № 4. - С. 45-57.
- Zamyshlyaeva, A.A. The Cauchy Problem for the Sobolev Type Equation of Higher Order / A.A. Zamyshlyaeva, E.V. Bychkov // Вестник ЮУрГУ. Серия "Математическое моделирование и программирование". - 2018. - Т. 11, №. 1. - С. 5-14.
- Свиридюк, Г.А. Фазовые пространства одного класса линейных уравнений соболевского типа высокого порядка / Г.А. Свиридюк, А.А. Замышляева // Дифференц. уравн. - 2006. - Т. 42, № 2. - С. 252-260.