On one mathematical model described by boundary value problem for the biharmonic equation
Автор: Karachik V.V., Torebek B.T.
Рубрика: Математическое моделирование
Статья в выпуске: 4 т.9, 2016 года.
Бесплатный доступ
In this paper mathematical model described by a generalized third boundary value problem for the homogeneous biharmonic equation in the unit ball with boundary operators up to the third order containing normal derivatives and Laplacian is investigated. Particular cases of the considered mathematical model are the classical models described by Dirichlet, Riquier, and Robin problems, and the Steklov spectral problem, as well as many other mathematical models generated by these boundary conditions. Two existence theorems for the solution of the problem are proved. Existence conditions are obtained in the form of orthogonality on the boundary of some linear combination of boundary functions to homogeneous harmonic polynomials of a particular order. The obtained results are illustrated by some special cases of the general problem.
Mathematical model, biharmonic equation, boundary value problems, laplace operator
Короткий адрес: https://sciup.org/147159398
IDR: 147159398 | DOI: 10.14529/mmp160404
Список литературы On one mathematical model described by boundary value problem for the biharmonic equation
- Andersson L-E., Elfving T., Golub G.H. Solution of Biharmonic Equations with Application to Radar Imaging. Journal of Computational and Applied Mathematics, 1998, vol. 94, no. 2, pp. 153-180 DOI: 10.1016/S0377-0427(98)00079-X
- Lai M.-C., Liu H.-C. Fast Direct Solver for the Biharmonic Equation on a Disk and Its Application to Incompressible Flows. Applied Mathematics and Computation, 2005, vol. 164, no. 3, pp. 679-695 DOI: 10.1016/j.amc.2004.04.064
- Ehrlich L.N., Gupta M.M. Some Difference Schemes for the Biharmonic Equation. SIAM Journal on Numerical Analysis, 1975, vol. 12, no. 5, pp. 773-790 DOI: 10.1137/0712058
- Almansi E. Sull'integrazione dell'equazione differenziale. Annali di Matematica Pura ed Applicata, 1899, vol. 2, no. 3, pp. 1-51 DOI: 10.1007/BF02419286
- Boggio T. Sulle funzioni di green d'ordinem. Rendiconti del Circolo Matematico di Palermo, 1905, pp. 97-135.
- Love A.E.H. Biharmonic Analysis, Especially in a Rectangle, and Its Application to the Theory of Elasticity. Journal London Mathematical Society, 1928. vol. 3, pp. 144-156 DOI: 10.1112/jlms/s1-3.2.144
- Zaremba S. Sur l'integration de l'equation biharmonique. Bulletin International de l'Academie des Sciences de Cracovie, 1908, pp. 1-29.
- Карачик, В.В. Построение полиномиальных решений задачи Дирихле для полигармонического уравнения в шаре/В.В. Карачик//Журнал вычислительной математики и математической физики. -2014. -T. 54, № 7. -C. 1149-1170.
- Karachik V.V. Normalized System of Functions with Respect to the Laplace Operator and Its Applications. Journal of Mathematical Analysis and Applications, 2003, vol. 287, no. 2, pp. 577-592 DOI: 10.1016/S0022-247X(03)00583-3
- Karachik V.V., Turmetov B.Kh., Bekaeva A. Solvability Conditions of the Neumann Boundary Value Problem for the Biharmonic Equation in the Unit Ball. International Journal of Pure and Applied Mathematics, 2012. vol. 81, no. 3, pp. 487-495.
- Карачик, В.В. Условия разрешимости задачи Неймана для однородного полигармонического уравнения/В.В. Карачик//Дифференциальные уравнения. -2014. -Т. 50, № 11. -С. 1455-1461.
- Карачик, В.В. Об условиях разрешимости задачи Неймана для полигармонического уравнения в единичном шаре/В.В. Карачик//Сибирский журнал индустриальной математики. -2013. -T. 16, № 4 (56). -C. 61-74.
- Gazzola F., Sweers G. On Positivity for the Biharmonic Operator under Steklov Boundary Conditions. Archive for Rational Mechanics and Analysis, 2008, vol. 188, pp. 399-427 DOI: 10.1007/s00205-007-0090-4
- Karachik V.V., Sadybekov M.A., Torebek B.T. Uniqueness of Solutions to Boundary-Value Problems for the Biharmonic Equation in a Ball. Electronic Journal of Differential Equations, 2015, vol. 2015, no. 244, pp. 1-9.
- Карачик, В.В. Построение полиномиальных решений некоторых краевых задач для уравнения Пуассона/В.В. Карачик//Журнал вычислительной математики и математической физики. -2011. -Т. 51, № 9. -С. 1674-1694.
- Карачик, В.В. Об одной задаче для полигармонического уравнения в шаре/В.В. Карачик//Сибирский математический журнал. -1991. -Т. 32, № 5. -C. 51-58.
- Карачик, В.В. О свойстве среднего для полигармонических функций в шаре/В.В. Карачик//Математические труды. -2013. -T. 16, № 2. -C. 69-88.
- Karachik V.V., Torebek B.T. On Uniqueness and Correct Solvability of the Biharmonic Boundary Value Problem. AIP Conference Proceedings, 2016, vol. 1759, 020045, 4 p DOI: 10.1063/1.4959659