On positive invertibility and splittings of operators in ordered Banach spaces

Автор: Sivakumar Koratti Chengalrayan, Weber Martin Richard

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 1 т.15, 2013 года.

Бесплатный доступ

The positive invertibility of operators between Banach spaces, ordered by special closed cones, is characterized by the existence of splittings for the operators into the difference of two operators with appropriate spectral properties. Some results, up to now known only for matrices, are generalized to operators and to order intervals of operators.

Ordered banach spaces, cones in ordered spaces, positively invertible operators, splitting of operators, intervals of operators

Короткий адрес: https://sciup.org/14318409

IDR: 14318409

Список литературы On positive invertibility and splittings of operators in ordered Banach spaces

  • Aliprantis C. D., Burkinshaw O. Positive Operators.-N.Y.: Acad. Press, 1985.-367 p.
  • Azhorkin V. I., Bakhtin I. A. On the geometry of cones of linear positive operators in Banach spaces//Тр. центрального зонального объединения мат. кафедр. Функциональный анализ и теория функций.-1971.-Т. 2.-P. 3-10.
  • Azhorkin V. I., Bakhtin I. A. On the characteristics of normality and reproducibility of the wedge of linear positive operators//Функциональный анализ.-Ульяновск: Изд-во гос. пед. ин-та, 1980.-Т. 15.-C. 5-13.
  • Bakhtin I. A. On the existence of positive eigenvectors of linear positive operators//Мат. сб.-1964.-Т. 64, № 106.-C. 102-114.
  • Bakhtin I. A. Cones of Linear Positive Operators.-Воронеж: Изд-во гос. пед. ин-та, 1978.
  • Bakhtin I. A. A theorem on the existence of positive eigenvectors of linear positive non-compact operators//Функциональный анализ.-1981.-Т. 17.-C. 10-19.
  • Bakhtin I. A. On the existence of positive eigenvectors of linear positive operators//Операторные уравнения в функциональных пространствах.-Воронеж: Изд-во гос. пед. ин-та, 1988.-С. 10-19.
  • Berman A., Plemmons R. J. Nonnegative Matrices in Mathematical Sciences.-Philadelphia: Society for Industrial and Appl. Math., 1994.-(Classics in Applied Math. Vol. 9).
  • Collatz L. Aufgaben monotoner Art//Arch. Math.-1952.-Vol. 3.-P. 366-376.
  • Debasisha Mishra, Sivakumar K. C. On Splittings of Matrices an Nonnegative Generalized Inverses//Operators and Matrices.-2012.-Vol. 6.-P. 85-95.
  • Farina L., Rinaldi S. Positive Linear Systems: Theory and Applications.-New York: John Wiley&Sons, Inc., 2000.-(Pure an Appl. Math.).
  • Kantorovich L. V., Akilov G. P. Functional Analysis. 2nd ed.-M.: Nauka, 1977; Engl. transl.: Oxford: Pergamon Press, 1982.
  • Krasnosel'skij M. A., Lifshitz J. A., Pokornyj Y. V., Stecenko V. J. Positive invertible linear operators and solvability of nonlinear equations//Докл. АН Таджикской ССР.-1974.-Т. 17, № 1.-C. 12-14.
  • Krasnosel'skij M. A., Lifshitz J. A., Pokornyj Y. V., Stecenko V. J. On positive invertibility of linear operators//Качественные и приблизительные методы исслед. операторных уравнений.-1980.-Т. 5.-C. 90-99.
  • Krasnosel'skij M. A., Lifshitz J. A., Sobolev A. V. Positive Linear Systems: The Method of Positive Operators.-Berlin: Heldermann Verlag, 1989.
  • Ortega J. M., Rheinboldt W. C. Iterative Solutions of Nonlinear Equations in Several Variables.-New York: Academic Press, 1970.
  • McArthur C. W. In what spaces is every closed normal cone regular?//Proc. Edinburgh Math. Soc.-1970/1971.-Vol. 17.-C. 121-125.
  • Peris J. E. A new characterization of inverse-positive matrices//Linear Algebra Appl.-1991.-Т. 154-155.-P. 45-58.
  • Rohn J. Inverse-positive interval matrices//Z. Angew. Math. Mech.-1987.-Vol. 67.-P. T492-T493.
  • Schroder J. Lineare Operatoren mit positiven Inversen//Arch. Rational Mech. Anal.-1961.-Vol. 8.-P. 408-434.
  • Schroder J. Operator Inequalities.-New York: Acad. Press, 1980.-267 p.-(Math. in Science and Engineering. Vol. 147.).
  • Varga R. S. Matrix Iterative Analysis.-Berlin: Springer-Verlag, 2009.-358 p.-(Springer Ser. in Comp. Math. Vol. 27).
  • Vulikh B. Z. Introduction to the Theory of Cones in Normed Spaces.-Kalinin: Izdat. Kalinin. Univ., 1977.
  • Vulikh B. Z. Special Topics in the Geometry of Cones in Normed Spaces.-Kalinin: Izdat. Kalinin. Univ., 1978.
  • Weber M. R. On the Positiveness of the Inverse Operator//Math. Nachr.-1993.-Vol. 163.-P. 145-149.
  • Weber M. R. On the Positiveness of the Inverse Operator. Erratum//Math. Nachr.-1995.-Vol. 171.-P. 325-326.
  • Weber M. R. On positive invertibiliy of operators and their decompositions//Math. Nachr.-2009.-Vol. 282, № 10.-P. 1478-1487.
Еще
Статья научная