On some properties of orthosymmetric bilinear operators

Автор: Kusraev Anatoly Georgievich

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 3 т.10, 2008 года.

Бесплатный доступ

This note contains some properties of positive orthosymmetric bilinear operators on vector lattices which are well known for almost f-algebra multiplication but despite of their simplicity does not seem appeared in the literature.

Vector lattice, square of a vector lattice, bilinear operator, orthosymmetry, lattice bimorphism, f-algebra multiplication

Короткий адрес: https://sciup.org/14318249

IDR: 14318249

Список литературы On some properties of orthosymmetric bilinear operators

  • Aliprantis C. D., Burkinshaw O. Positive Operators.-London etc.: Acad. press inc., 1985.-367 p.
  • Bernau S. J., Huijsmans C. B. Almost f-algebras and d-algebras//Math. Proc. London Phil. Soc.-1990.-Vol.107.-P. 287-308.
  • Boulabiar K. Products in almost f-algebras//Comment. Math Univ. Carolinae.-1997.-Vol. 38.-P. 749-761.
  • Boulabiar K. A relationship between two almost f-algebra multiplications//Algebra Univers.-2000.-Vol. 43.-P. 347-367.
  • Boulabiar K., Buskes G., Triki A. Results in f-algebras//Positivity (Eds. K. Boulabiar, G. Buskes, A.Triki).-Basel a. o.: Birkhauser, 2007.-P. 73-96.
  • Bu Q., Buskes G., Kusraev A. G. Bilinear maps on product of vector lattices: A survey//Positivity (Eds. K. Boulabiar, G. Buskes, A. Triki).-Basel a. o.: Birkhauser, 2007.-P. 97-126.
  • Buskes G., Kusraev A. G. Representation and extension of orthoregular bilinear operators//Vladikavkaz Math. J.-2007.-Vol. 9, iss. 1.-P. 16-29.
  • Buskes G., van Rooij A. Almost f-algebras: commutativity and the Cauchy-Schwarz inequality//Positivity.-2000.-Vol. 4, №3.-P. 227-231.
  • Buskes G., van Rooij A. Almost f-algebras: structure and Dedekind completion//Positivity.-2000.-Vol. 4, № 3.-P. 233-243.
  • Buskes G., van Rooij A. Squares of Riesz spaces//Rocky Mountain J. Math.-2001.-Vol. 31, № 1.-P. 45-56.
  • Fremlin D. H. Tensor product of Archimedean vector lattices//Amer. J. Math.-1972.-Vol. 94.-P. 777-798.
  • van Gaans O. W. The Riesz part of a positive bilinear form//Circumspice.-Nijmegen: Katholieke Universiteit Nijmegen, 2001.-P. 19-30.
  • Kusraev A. G. Dominated Operators.-Dordrecht: Kluwer, 2000.
  • Kusraev A. G. On the structure of orthosymmetric bilinear operators in vector lattices//Dokl. RAS.-2006.-Vol. 408, №1.-P. 25-27.
  • Schaefer H. H. Aspects of Banach lattices//Studies in Functional Analysis. MMA Studies in Math.-1980.-Vol. 21.-P. 158-221.-(Math. Assoc. America, 1980).
Еще
Статья научная