On the construction of stress discontinuity lines for a two-dimensional plastic region
Автор: Evtikhov D.O., Yakhno A.N., Savostyanova I.L.
Журнал: Siberian Aerospace Journal @vestnik-sibsau-en
Рубрика: Informatics, computer technology and management
Статья в выпуске: 3 vol.23, 2022 года.
Бесплатный доступ
The paper considers the plasticity equations in case of two dimensions and the construction of stress discontinuity lines. The construction of stress discontinuity lines is based on the fact that they are located at the intersection point of lines of the same family (characteristics) and are directed along the bisector of the angle formed by these characteristics. Therefore, to find these lines, we constructed characteristics. Such a problem is easier to solve in case of plastic torsion, then there is only one characteristic, it is directed along the normal to the outer contour, and finding the sliding lines and their intersection points is quite simple. Consequently, most of the works devoted to the construction of stress discontinuity lines solve the problem of plastic torsion for isotropic and anisotropic media. For problems of plane strain of plastic ma-terial, this method is not sufficiently developed. This is due to the complexity of constructing sliding lines for such problems and the presence of two families of sliding lines. In this paper, we construct a homotopy of two known exact solutions: that of Prandtl and of Nadai, that is, a continuous transformation of one solution into another. In this case, one can observe the evolution of characteristics that depend on the group parameter a: for a = 1, the characteristics of the Prandtl solution are obtained; at a = 0, the characteristics of the Nadai solution, at a = 0.5, the characteristics of one fami-ly begin to intersect and lines of stress discontinuity appear. These lines are constructed in this paper.
Stress discontinuity line, plasticity equations, homotopy of solutions
Короткий адрес: https://sciup.org/148329634
IDR: 148329634 | DOI: 10.31772/2712-8970-2022-23-3-364-371
Список литературы On the construction of stress discontinuity lines for a two-dimensional plastic region
- Dilman V. L., Eroshkina T. V. Matematicheskoe modelirovanie kriticheskih sostoyanij myagkih prosloek v neodnorodnyh soedineniyah [Mathematical modeling of critical states of soft interlayers in inhomogeneous compounds: monograph]. Chelyabinsk, YUUrGU Publ. 2011, 276 p.
- Eroshkina T. V., Dilman V. L. [Mathematical modeling of the stress state of a transverse plastic layer in a round rod]. Izvestiya VUZov. Mathematics. 2011, No. 11, P. 1–11 (In Russ.).
- Dilman V. L., Eroshkina T. V [Investigation of mathematical models of the stress state of an in-homogeneous transverse layer in a round rod]. Bulletin of YUUrGU. Mathematical modeling and pro-gramming. 2009, Is. 4, No. 37 (170), P. 65–77 (In Russ.).
- Eroshkina T. V., Dilman V. L [Mathematical modeling of the state stress of a transverse plastic layer in a round rod]. Russian Mathematics. 2011, Vol. 55, Is. 11, P. 9–17.
- Eroshkina T. V. Matematicheskoe modelirovanie napryazhennogo sostoyaniya neodnorodnyh cilindricheskih sterzhney. Кand. Dis. [Mathematical modeling of the stress state of inhomogeneous cylindrical rods.]. Chelyabinsk, 2010, 103 p.
- Nosacheva A. I. [Mathematical modeling of the stress state of an inhomogeneous strip with an external macrodefect]. Bulletin of YUUrGU. Mathematical modeling and programming. 2013, Vol. 6, No. 3, P. 79–84 (In Russ.).
- Ivlev D. D. Teoriya ideal'noj plastichnosti [Theory of ideal plasticity]. Moscow, Nauka Publ., 1966, 231 p.
- Mironov B. G. [On torsion of prismatic rods under the influence of pressure linearly varying along the generatrix]. Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I. Ya. Yakovleva. 2006, No. 1 (48), P. 98–10 (In Russ.).
- Ivlev, D. D. [On the relations of translational ideal-plastic anisotropy in torsion] Vestnik Chu-vashskogo gosudarstvennogo pedagogicheskogo universiteta im. I. Ya. Yakovleva. Series: Mechanics of the limit state. 2010, No. 2 (8), P. 576–579 (In Russ.).
- Kozlova L. S. Predel'noe sostoyanie prizmaticheskih sterzhnej pri kruchenii [The limiting state of prismatic rods during torsion]. Chuvash State Pedagogical University, 2010, 7 p. Bibliogr.: 3 titles. Rus. Dept. in VINITI 29.04.10, No. 232-V2010.
- Mironov B. G., Mitrofanova T. V. [Deformed state of translationally anisotropic bodies under torsion]. Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universitetaim. I. Ya. Yakovleva. 2011, No. 4 (72), P. 57–60 (In Russ.).
- Kozlova L. S., Mironov B. G. [Torsion of the sector of an anisotropic circular ring under the ac-tion of variable pressure]. Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universitetaim. I. Ya. Yakovleva. 2010, No. 4 (68), P. 132–136 (In Russ.).
- Mironov B. G. [On general relations of the theory of torsion of anisotropic rods]. Vestnik Chu-vashskogo gosudarstvennogo pedagogicheskogo universitetaim. I. YA. Yakovleva. 2012, No. 4 (76), P. 108–112 (In Russ.).
- Burenin A. A., Bykovtsev G. I., Rychkov V. A. [Surfaces of velocity discontinuities in the dy-namics of irreversibly compressible media]. Problemy mekhaniki sploshnyh sred: Sbornik nauchnyh rabot. Vladivostok, IAPU DVO RAN Publ., 1996, P. 116–128.
- Bykovtsev G. I., Kretova L. D. [On the propagation of shock waves in elastic-plastic media]. Prikldanaya matematika i mekhanika. 1972, Vol. 36, Is. 1, P. 106–116 (In Russ.).
- Limarev A. E., Chernyshev A. D. [O propagation of shock waves in an elastic-plastic medium with hardening]. Prikldanaya matematika i mekhanika. 1971, Vol. 35, Is. 6, P. 1083–1088 (In Russ.).
- Sadovsky V. M. [On the theory of propagation of elastic-plastic waves in hardening media]. Zhurnal Prikladnaya mekhanika i tekhnicheskaya fizika. 1994, No. 5, P. 166–172 (In Russ.).