On the possibility of utilizing sodium lignosulfonate as a nano-organic foundation for creating soil-like bodies in the purposes of technogenic-degraded land rehabilitation

Автор: Ekaterina S. Dorogaya, Ruslan R. Suleymanov, Elena V. Kuzina, Maria G. Yurkevich, Olga N. Bakhmet

Журнал: Nanotechnologies in Construction: A Scientific Internet-Journal @nanobuild-en

Рубрика: Research results of scientists and specialists

Статья в выпуске: 4 Vol.15, 2023 года.

Бесплатный доступ

Introduction. Currently a significant number of quarry restoration strategies have been developed, based on different aspects of soil impact: specifically, mixing the topsoil with the empty rock of exhausted quarries; introducing organic waste; applying mulching and polymer structure formers; using the adapted plants. In this study we attempt to combine the positive aspects of the previously mentioned methods. Therefore, the aim of our research is to create artificial soil-like structures with specified agroecological properties. We anticipate further use of the obtained mixture as a layer between the quarry waste material and fertile soil, which is to be applied to the reclaimed surface and followed by the planting of local plant species. Materials and methods. Studies on the possibility of reclamation of mine tailings were conducted under conditions of model experiment with sodium lignosulfonate (SL), a waste organic material from the pulp and paper industry, as the organic base for the soil-like body. Fine fraction soil (FS) sampled from the mine tailings was mixed with SL in ratios of 1/0.5, 1/1, and 1/2; to accelerate the decomposition of organic matter depending on the experimental scheme, strains of bacteria Acinetobacter calcoaceticus and Pseudomonas kunmingensis were added. The obtained mixtures have been composting for three months at a room temperature, with regular mixing and maintaining moisture levels. The phytotoxicity of the obtained mixtures was assessed by germinating seeds of a short duration radish variety called "18 days". Results and discussion. The application of sodium lignosulfonate (SL) into the fine fraction soil (FS) significantly increased the organic matter content and decreased the acidity of the medium. The fertilizing with nitrogen in the SL experimental variants has led to a significant increase in the content of alkali-hydrolysable nitrogen compared to the variants in the absence of N and the presence of SL. Conclusion. The research results showed that the application of sodium lignosulfonate (SL) to the fine fraction soil (FS) contributed to a decrease in acidity, an increase in organic matter and alkali-hydrolysable nitrogen content in the mixture, as well as a reduction in substrate toxicity.

Еще

Sodium lignosulfonate, quarry reclamation, nano-fertilizer, microorganisms

Короткий адрес: https://sciup.org/142238310

IDR: 142238310   |   DOI: 10.15828/2075-8545-2023-15-4-359-372

Список литературы On the possibility of utilizing sodium lignosulfonate as a nano-organic foundation for creating soil-like bodies in the purposes of technogenic-degraded land rehabilitation

  • Stockmann U., Minasny B., McBratney A.B. Monitoring changes in global soil organic carbon stocks from space. Remote Sensing of Environment. 2022; 281: 113260. https://doi.org/10.1016/j.rse.2022.113260
  • Wang J., Zhen J., Hu W., Chen S., Lizaga I., Zeraatpisheh M., Yang Xi. Remote sensing of soil degradation: Progress and perspective. International Soil and Water Conservation Research. 2023. https://doi.org/10.1016/j.iswcr.2023.03.002
  • Zika M., Erb K.-H. The global loss of net primary production resulting from human-induced soil degradation in drylands. Ecological Economics. 2009; 69(2): 310–318. https://doi.org/10.1016/j.ecolecon.2009.06.014
  • Mi J., Huping H., Simit R., Yongjun Y., Shaoliang Zh., Yifei H., Chen W., Fuyao Ch. Effect of crop cultivation on the soil carbon stock in mine dumps of the Loess Plateau, China. Science of The Total Environment. 2020; 741: 139809. https://doi.org/10.1016/j.scitotenv.2020.139809
  • Mukhopadhyay S., Maiti S.K., Masto R.E. Development of mine soil quality index (MSQI) for evaluation of reclamation success: A chronosequence study. Ecological Engineering. 2014; 71: 10–20. https://doi.org/10.1016/j.ecoleng.2014.07.001
  • Sullivan J., Aggett J., Amacher G., Burger J. Financial viability of reforesting reclaimed surface mined lands, the burden of site conservation costs, and carbon payments as reforestation incentives. Resources Policy. 2006; 30: 247–258. https://doi.org/0.1016/j.resourpol.2006.03.001
  • Bonifazi G., Cutaia L., Massacci P., Roselli I. Monitoring of abandoned quarries by remote sensing and in situ surveying. Ecological Modelling. 2003; 170 (2–3): 213–218. https://doi.org/10.1016/S0304-3800(03)00228-X
  • Abakumov E., Zverev A., Suleymanov A., Suleymanov R. Microbiome of post-technogenic soils of quarries in the Republic of Bashkortostan (Russia). Open Agriculture. 2020; 5 (1): 529–538. https://doi.org/10.1515/opag-2020-0053
  • Gentili R., Casati E., Ferrario A., Monti A., Montagnani Ch., Caronni S., Citterio S. Vegetation cover and biodiversity levels are driven by backfilling material in quarry restoration. CATENA. 2020; 195: 104839. https://doi.org/10.1016/j.catena.2020.104839
  • Soliveres S., Gutiérrez-Acevedo E., Moghli A., Cortina-Segarra J. Effects of early irrigation and compost addition on soil and vegetation of a restored semiarid limestone quarry are undetectable after 13 years. Journal of Arid Environments. 2021; 186: 104401. https://doi.org/10.1016/j.jaridenv.2020.10440
  • Abakumov E.V., Suyundukov Ya.T., Pigareva T.A., Semenova I.N., Khasanova R.F., Biktimerova G.Ya., Rafikova Yu.S., Ilbulova G.R. Biological and sanitary evaluation of Sibaisky quarry dumps of the Bashkortostan Republic. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2016; 95(10): 929–934. (In Russ.). https://doi.org/10.18821/0016-9900-2016-95-10-929-934
  • Soliveres S., Gutiérrez-Acevedo E., Moghli A., Cortina-Segarra J. Effects of early irrigation and compost addition on soil and vegetation of a restored semiarid limestone quarry are undetectable after 13 years. Journal of Arid Environments. 2021; 186: 104401. https://doi.org/10.1016/j.jaridenv.2020.104401
  • Murali S., Asokan P., Morchhale R.K. Chapter 12 – High volume fly ash utilization for reclamation of wastelands with special reference to mine spoil and ash back-haul areas for agriculture and forestry. Editor(s): Gouri Sankar Bhunia, Uday Chatterjee, Anil Kashyap, Pravat Kumar Shit. Modern Cartography Series. Cambridge, Massachusetts: Academic Press; 2021; 10: 243–263. https://doi.org/10.1016/B978-0-12-823895-0.00029-4
  • Zornoza R., Faz A., Carmona D.M., Martinaz-Martinez S., Acosta J.A. Plant Cover and Soil Biochemical Properties in a Mine Tailing Pond Five Years After Application of Marble Wastes and Organic Amendments. Pedosphere. 2012; 22 (1): 22–32. https://doi.org/10.1016/S1002-0160(11)60188-4
  • Navarro-Pedreño J., Belén Almendro-Candel M., Gómez I., Jordán M.M., Pardo F. Chapter 14 – Organic Mulching to Improve Mining Soil Restoration. Editor(s): Jaume Bech, Claudio Bini, Mariya A. Pashkevich. Assessment, Restoration and Reclamation of Mining Influenced Soils. Cambridge, Massachusetts: Academic Press; 2017; 375–386. https://doi.org/10.1016/B978-0-12-809588-1.00014-1
  • Zheng M., Huang Zh., Ji H., Qiu F., Zhao D., Bredar A.R.C., Farnum B.H. Simultaneous control of soil erosion and arsenic leaching at disturbed land using polyacrylamide modified magnetite nanoparticles. Science of The Total Environment. 2020; 702: 134997. https://doi.org/10.1016/j.scitotenv.2019.134997
  • Ortega R., Domene M.A., Soriano M., Sánchez-Marañón M., Asensio C., Miralles I. Improving the fertility of degraded soils from a limestone quarry with organic and inorganic amendments to support vegetation restoration with semiarid Mediterranean plants. Soil and Tillage Research. 2020; 204: 104718. https://doi.org/10.1016/j.still.2020.104718
  • Prasad M.N.V., Nakbanpote W., Phadermrod C., Rose D., Suthari, S. Mulberry and Vetiver for Phytostabilization of Mine Overburden. Bioremediation and Bioeconomy. 2016; 295–328. https://doi.org/10.1016/b978-0-12-802830-8.00013-7
  • O’Brien P.L., DeSutter T.M., Ritter S.S., Casey F.X.M., Wick A.F., Khan E., Matthees H.L. A large-scale soil-mixing process for reclamation of heavily disturbed soils. Ecological Engineering. 2017; 109, 84–91. https://doi.org/10.1016/j.ecoleng.2017.09.015
  • Merino-Martín L., Commander L., Mao Z., Stevens J.C., Miller B.P., Golos P.J., Dixon K. Overcoming topsoil deficits in restoration of semiarid lands: Designing hydrologically favourable soil covers for seedling emergence. Ecological Engineering. 2017; 105: 102–117. https://doi.org/10.1016/j.ecoleng.2017.04.033
  • Sampaio A.D., Pereira P.F., Nunes A., Clemente A., Salgueiro V., Silva C., Mira A., Branquinho Cr., Salgueiro P. Bottom-up cascading effects of quarry revegetation deplete bird-mediated seed dispersal services. Journal of Environmental Management. 2021; 298: 113472. https://doi.org/10.1016/j.jenvman.2021.113472
  • Carvalho C., Oliveira A., Caeiro E., Miralto O., Parrinha M., Sampaio A., Silva C., Mira A., Salgueiro P.A. Insect pollination services in actively and spontaneously restored quarries converge differently to natural reference ecosystem. Journal of Environmental Management. 2022; 318: 115450. https://doi.org/10.1016/j.jenvman.2022.115450
  • Luna L., Pastorelli R., Bastida F., Hernández T., García C., Miralles I., Solé-Benet A. The combination of quarry restoration strategies in semiarid climate induces different responses in biochemical and microbiological soil properties. Applied Soil Ecology. 2016; 107: 33–47. https://doi.org/10.1016/j.apsoil.2016.05.006
  • Tomczyk A., Kubaczyński A., Szewczuk-Karpisz K. Assessment of agricultural waste biochars for remediation of degraded water-soil environment: Dissolved organic carbon release and immobilization of impurities in one- or two-adsorbate systems. Waste Management. 2023; 155: 87–98. https://doi.org/10.1016/j.wasman.2022.10.039
  • Ariyanta H.A., Sari F.P., Sohail A., Restu W.K., Septiyanti M., Aryana N., Fatriasari W., Kumar A. Current roles of lignin for the agroindustry: Applications, challenges, and opportunities. International Journal of Biological Macromolecules. 2023; 240: 124523. https://doi.org/10.1016/j.ijbiomac.2023.124523
  • Ерошина Д.М., Лысухо Н.А., Ракова Ю.С. Лигнин – образование, использование, хранение, воздействие на окружающую среду // Экологический вестник. – 2010. – 3: 109–118. [Eroshina D.M., Lysukha N.A., Rakova U.S. Lignin: producting, utilization, keeping, influence on environment. Jekologicheskij vestnik/Journal of the Belarusian State University. Ecology. 2010; 3: 109–118 (In Russ.)]
  • Shi W., Zhao H.-Y., Chen Y., Wang J.-S., Han B., Li C.-P., Lu J.-Y., Zhang L.-M. Organic manure rather than phosphorus fertilization primarily determined asymbiotic nitrogen fixation rate and the stability of diazotrophic community in an upland red soil. Agriculture, Ecosystems & Environment. 2021; 319: 107535. https://doi.org/10.1016/j.agee.2021.107535
  • Химизация земледелия и природная среда / под ред. Минеева В.Г. М.: Агропромиздат, 1990. 287 с. [Mineev V.G. Chemicalization of agriculture and the natural environment. Moscow: Agropromizdat, 1990: 287 p. (In Russ.)]
  • Sobek S., Tran Q.K., Junga R., Sajdak M., Werle S. Comparative assessment of liquid product from hydrothermal treatment of lignosulfonate in batch and nozzle reactors for aromatic compounds recovery. Biomass and Bioenergy. 2023; 172: 106768. https://doi.org/10.1016/j.biombioe.2023.106768
  • Yang J., Liu L., An X., Seta F.T., Li C., Zhang H., Luo B., Hu Q., Zhang R., Nie Sh., Cao H. Cheng Zh., Liu H. Facile preparation of lignosulfonate induced silver nanoparticles for high efficient removal of organic contaminants in wastewater. Industrial Crops and Products. 2021; 169: 113644. https://doi.org/10.1016/j.indcrop.2021.113644
  • Barbieri D.M., Hoff I., Mørk, M.B.E. Organosilane and lignosulfonate as innovative stabilization techniques for crushed rocks used in road unbound layers. Transportation Geotechnics. 2020; 22: 100308. https://doi.org/10.1016/j.trgeo.2019.100308
  • Vakili A.H., Ghasemi J., bin Selamat M.R., Salimi M., Farhadi M.S. Internal erosional behaviour of dispersive clay stabilized with lignosulfonate and reinforced with polypropylene fiber. Construction and Building Materials. 2018; 193: 405–415. https://doi.org/10.1016/j.conbuildmat.2018.10.213
  • Ahmad U.M., Ji N., Li H., Wu Q., Song C., Liu Q., Ma D., Lu X. Can lignin be transformed into agrochemicals? Recent advances in the agricultural applications of lignin. Industrial Crops and Products. 2021; 170: 113646. https://doi.org/10.1016/j.indcrop.2021.113646
  • Lu J., Cheng M., Zhao Ch., Li B., Peng H., Zhang Y., Shao Q., Hassan M. Application of lignin in preparation of slow-release fertilizer: Current status and future perspectives. Industrial Crops and Products. 2022; 176: 114267. https://doi.org/10.1016/j.indcrop.2021.114267
  • Wang W., Hou Y., Huang W., Liu X., Wen P., Wang Y., Yu Zh., Zhou S. Alkali lignin and sodium lignosulfonate additives promote the formation of humic substances during paper mill sludge composting. Bioresource Technology. 2020. 124361. https://doi.org/10.1016/j.biortech.2020.124361
  • Abdellah Y.A.Y., Shi Zh.-J., Sun Sh.-Sh., Luo Y.-S., Yang X., Hou W.-T., Wang R.-L. An assessment of composting conditions, humic matters formation and product maturity in response to different additives: A meta-analysis. Journal of Cleaner Production. 2022; 366: 132953. https://doi.org/10.1016/j.jclepro.2022.132953
  • Volchatova I.V., Medvedeva S.A. Efficiency of Hydrolyzed Lignin Fertilizer for Gray Forest Soil. Agrohimija/Eurasian Soil Science. 2014; 11: 30–33 (In Russ.)
  • Yurkevich M.G., Ikkonen E.N. Influence of sodium lignosulfonate on loamy soil and cucumber plants. Russian journal of resources, conservation and recycling. 2020; 7(2). Available at: https://resources.today/PDF/01ECOR220.pdf (in Russian). https://doi.org/10.15862/01ECOR220
  • Carter M.R., Gregorich E.G. Soil Sampling and Methods of Analysis. 2nd Edition. Boca Raton, Florida: CRC Press; 2007.
  • Gylmutdynova R.A., Michurin S.V., Elizareva E.N. Industrial waste resource potential of ore mining and processing enterprises of the Southern Urals. Uspehi sovremennogo estestvoznanija/Advances in current natural sciences. 2017; 2: 68–73 (In Russ.).
  • Salikhov D.N., Kovalev S.G., Belikova G.I., Berdnikov P.G. The Resources of the Bashkortostan Republic (gold). Part 1. Ufa: Ecologia, House, 2003. 222 p (In Russ.).
  • Yarapov I.M. Atlas of the Republic of Bashkortostan. Ufa: Kitap, 2005: 419 p. (In Russ.).
  • Sharipova Yu.Yu., Kuzina E.V., Mukhamatdyarova S.R., Korshunova Y.Yu., Mahmutov A.R. Biotechnological properties of a new strain-the oil destructor Acinetobacter Sp. UOM 22. Integration of science and higher education in the field of bio- and organic chemistry and biotechnology: materials of the XVI All-Russian Scientific Internet Conference. Ufa: UGNTU, 2022: 168 p. (In Russ.).
  • Korshunova Y.Yu., Kuzina E.V., Mukhamatdyarova S.R., Loginov D.O., Sharipova Yu.Yu. Screening for hydrocarbon-oxidizing microorganisms resistant to heavy metals and sodium chloride. Proceedings of the RAS Ufa Scientific Centre. 2022. 3: 23–30. https://doi.org/10.31040/2222-8349-2022-0-3-23-30
  • Kuzina E.V., Rafikova G.F., Mukhamatdyarova S.R., Sharipova Yu.Yu., Korshunova T.Yu. Microbiological preparation for acceleration of the straw destruction and soil fertility increasing. Dostizheniya nauki i tekhniki APK/ Achievements of Science and Technology of AIC. 2022; 36(9): 326. (In Russ.) https://doi.org/10.53859/02352451-2022-36-9-32
  • King E.D., Ward M.K., Raney D.E. Two Simple Media for the Demonstration of Pyo-Cyanin and Fluorescin. Journal of laboratory and clinical medicine. 1954; 44: 301–307.
  • Filatov E.N., Polushin I.P., Kuznetsov N.S. Assessment of seeds similarity. Modern problems and directions of agroengineering development in Russia: collection of scientific articles of the International Scientific and Technical Conference. Kursk: Kursk State Agricultural Academy named after I.I.Ivanov, 2021: 147–150.
  • Savy D., Mercl F., Cozzolino V., Spaccini R., Cangemi S., Piccolo A. Soil amendments with lignocellulosic residues of biorefinery processes affect soil organic matter accumulation and microbial growth. ACS Sustainable Chem. Eng. 2020; 8 (8): 3381–3391. https://doi.org/10.1021/acssuschemeng.9b07474
Еще
Статья научная