On the properties of nano-modified cement stones

Автор: Vakhitova R.I., Saracheva D.A., Mazankina D.V., Kiyamov I.K., Sabitov L.S.

Журнал: Nanotechnologies in Construction: A Scientific Internet-Journal @nanobuild-en

Рубрика: Study of properties of nanomaterials

Статья в выпуске: 5 Vol.11, 2019 года.

Бесплатный доступ

The use of nanotechnology in the construction industry improves its efficiency. The application of nano-modified materials makes it possible to reduce capital costs. Currently the introduction of nanomaterials is of great importance for the construction industry. Carbonaceous structures can be used as nano-modifiers. Carbon nanotubular material TUBALL produced by OCSiAl.ru LLC has been chosen. To perform research samples of single-layer and multi-walled carbon nanotubes were used as a part of cement heavy concrete. The optimal dosage of carbon nanotubes in the composition of cement concrete has been experimentally determined. The studies revealed that addition of TUBALL carbon nanotubes to the cement composition contributed to the formation of a mesh structure that resists the formation of shrinkable nanoscale cracks in the cement mortar, promotes the appearance of calcium hydrosilicates, increases the concentration of calcium ions at the start of the hydration period. The influence of modified nanoadditives in the composition of the complex additive on the mechanical properties of the cement composition has been considered. The complex of mechanical properties of cement nanoreinforced stone in the process of cementing the annular space of producing wells by X-ray and thermal methods of analysis has been studied. That confirmed the results of experiments performed with electronic and optical microscopy. The microstructural elements of the cement specimen were investigated with high-resolution auto-emission scanning electron microscope Merlin by CARL ZEISS. It was found that the addition of complex nanomodified additive TUBALL accelerates the curing of the cement composite at early stage of hardening, decreases value of shrinkable nano-cracks, that in turn positively characterizes the quality of contacts at the boundaries of cement-casing, rock-cement.

Еще

Heavy concrete, hyperplasticizer, water repellent, nano-modified cement stone, nanomaterials, TUBALL, single-layer and multi-layered carbon nanotubes, hardening, curing, dispersion

Короткий адрес: https://sciup.org/142227464

IDR: 142227464   |   DOI: 10.15828/2075-8545-2019-11-5-565-576

Текст научной статьи On the properties of nano-modified cement stones

”Creative
On the properties of nano-modified cement stones by Vakhitova R.I., Saracheva D.A., Mazankina D.V., Kiyamov I.K., Sabitov L.S. is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at .
Permissions beyond the scope of this license may be available at .

”Creative
On the properties of nano-modified cement stones by Vakhitova R.I., Saracheva D.A., Mazankina D.V., Kiyamov I.K., Sabitov L.S. is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at .
Permissions beyond the scope of this license may be available at .

С овременные исследования в области нанотехнологий поддерживаются Правительством Российской Федерации и внесены в список приоритетных направлений развития науки и техники. В Республике Татарстан уделяется должное внимание созданию новой продукции, модифицированной нанотрубками [1].

Особый научный практический интерес представляет улучшение эксплуатационных свойств бетона на основе его модификации с добавлением химических добавок, а именно углеродных нанотрубок для производства необходимых импортозамещающих и экспортоориентированных продуктов [2–4].

В соответствии с распоряжением КМ РТ от 16.07.2015г. № 1561 разработан план мероприятий по поддержке создания продуктов на основе одностенных углеродных нанотрубок (TUBALL) на предприятиях Республики Татарстан на 2015–2018 годы, а именно методики введения нанотрубок в различные строительные материалы, определение прочностных характеристик строительных материалов в зависимости от технологических режимов ввода, содержания и свойств нанотрубок TUBALL.

На современном этапе развития нанотехнологий изучение свойств бетона, модифицированного нанотрубками, представляет собой интерес и с научной, и практической точек зрения [5–7].

К цементным камням предъявляются определенные требования. В случае если цементный камень используется в скважинах, то при наноармировании тре-

буется изменить показатели водоотделения и фильтрации, сроков схватывания, времени загустевания, улучшения седиментационной устойчивости [8–10].

Существуют разные виды нанодобавок [11–13]. Наиболее рационально применять вытянутые наночастицы для улучшения физико-химических свойств цементного камня [14, 15]. Среди них можно выделить углеродные нанотрубки. Они обладают рядом достоинств: высокая прочность, инертность к щелочам и кислотам, хорошо армируют цементный раствор, представляют собой центры кристаллизации, превращают цементные композиты в высокопрочный материал [16–18].

Для модифицирования структуры цементных композитов наноразмерными частицами применяются два направления [19–21]:

– целенаправленное выращивание наноразмерных частиц для модифицирования структуры в твердеющей вяжущей системе;

– предварительный синтез наноразмерных частиц, последующее их введение в требуемую композицию.

В настоящее время наибольшее распространение получил второй метод, однако в силу высокой поверхностной активности наноразмерных трубок в процессе синтеза они объединяются в виде порошкообразных гранул в конгломераты, а это по объему композиционного раствора затрудняет их равномерное распределение. В результате эта технология способствует получению материала, имеющего высокую неоднородность по плотности, прочности и другим свойствам [22–24].

STUDY OF PROPERTIES OF NANOMATERIALS • ИССЛЕДОВАНИЕ СВОЙСТВ НАНОМАТЕРИАЛОВ

1. Экспериментальные исследования наномодифи-цированного цементного камня

Приводились исследования влияния нанотрубок на свойства цементного раствора, представляющего собой модель тяжелого бетона [25, 26]. Цементнопесчаный раствор состоял из цемента и песка в соотношении 1:3. Далее его затворяли водой из водопровода, а в ней заранее размешивалась суспензия углеродных нанотрубок в растворе, состоящем из воды, гидрофобизатора и смеси гиперпластификатора. Предварительно все компоненты раствора подвергались воздействию ультразвуковой диспергации для обеспечения однородной массы данной суспензии [27]. Процесс ультразвукового диспергирования длился 3,5 минуты, объем суспензии составил 100 мл, а мощность – 100 Вт. В качестве гиперпластификатора применялась добавка с высоким ранним набором прочности Remicrete SP 60 на основе поликарбокси-латэфиров. В качестве гидрофобизирующей добавки использовался Типром-С, имеющий кремнийорга-нический состав из 55%-ого концентрата на основе алкилсиликоната калия.

В качестве комплексной добавки с гидрофоби-затором и гиперпластификатором применялись углеродный нанотубулярный материал TUBALL производства ООО «OCSiAl.ru». Однослойные нанотрубки имели удельную геометрическую поверхность от 90 до 130 мг, многослойные нанотрубки – удельную геометрическую поверхность от 180 до 200 мг [5]. Удельная поверхность определялась по многоточечному методу Брюнера-Эммета-Тел-лера (БЭТ).

Экспериментально определили оптимальную дозировку углеродных нанотрубок в составе цементного бетона. Для однослойных углеродных нанотрубок она составила 0,005 % от массы цементной композиции, а для многослойных – 0,0005% от массы цементной композиции.

В процессе проведения экспериментальных исследований уточнили и выявили, что добавление углеродных нанотрубок TUBALL в цементную композицию способствовало образованию сетчатой структуры. Эта структура в свою очередь оказывает сопротивление образованию наноразмерных усадочных трещин в цементном растворе, способствует появлению новообразований в виде гидросиликатов кальция, повышает на старте периода гидратации концентрацию ионов кальция.

Рассмотрено влияние исследуемых модифицированных нанодобавок в составе комплексной добавки на механические свойства цементной композиции. Также изучен комплекс механических свойств цементного наноармированного камня в процессе цементирования затрубного пространства добывающих скважин рентгеновским и термическим методами анализа, что явилось подтверждением экспериментов электронной и оптической микроскопии [28–30].

В соответствии с ГОСТ 310.4-81 «Цементы. Методы определения предела прочности при изгибе и сжатии» выполнялись экспериментальные работы с использованием цемента на основе портландце-ментного клинкера ЦЕМ Ш/А 32.5Н производства «Ульяновский цементный завод». В качестве заполнителя мелкой среды применялся песок из месторождения Камское Устье, имеющий модуль крупности 2,7. Дозировка нанодобавок принималась в процентных соотношениях от массы цементного раствора (табл. 1).

Исследовали микроструктуры цемента. Для этого применяли высокоразрешающий автоэмиссион-ный сканирующий электронный микроскоп Merlin компании CARL ZEISS, который используется для выполнения измерений линейных микрорельеф-ных размеров твердотельных структур. Пробные сколы цементного композита напыляли в соотношении 80/20 сплавом Au/Pd на вакуумной установке

Таблица 1

Дозировка нанодобавок

Номер состава

Дозировка добавок, %

Гиперпластификатор

Гидрофобизатор

Однослойные углеродные нанотрубки

Многослойные углеродные нанотрубки

1

0

0

0

0

2

1

0,1

0

0

3

1

0

0

0

4

1

0,1

0,005

0

5

1

0,1

0

0,0005

STUDY OF PROPERTIES OF NANOMATERIALS • ИССЛЕДОВАНИЕ СВОЙСТВ НАНОМАТЕРИАЛОВ

в)

Рис. Электронные снимки образцов цементных камней:

  • а)    контрольный образец (увеличение 10000);

  • б)    образец с однослойными нанотрубками (увеличение 10000);

  • в)    образец с многослойными нанотрубками (увеличение 5000)

Quorum 150 Т ES. Для проведения фундаментальных исследований свойств наноматериалов применялось аналитическое оборудование ООО «Центр нанотехнологий Республики Татарстан» – автоматический рентгеновский дифрактометр Smartlab (RIGAKU) и синхронный термоанализатор STA 6000 (PERKIN ELMER), который дает возможность измерять термофизические характеристики (температуру и теплоту физико-химических реакций и фазовых переходов). С помощью этого оборудования изучили составы продуктов гидратации модифицированного нанотрубками Tuball и исходного цементных камней. Электронные снимки образцов цементных камней приведены на рис.

Анализ рис. показывает, что добавление углеродных однослойных нанотрубок способствует образованию плотной мелкокристаллической однородной структуры по сравнению с контрольным составом цементного камня. При добавлении углеродных многослойных нанотрубок в цементный композит микроструктура цементного образца отличается более рыхлой неоднородной структурой. Механические свойства модифицированного цементного камня приведены в табл. 2.

Из анализа табл. 2 следует, что при добавлении в цементный состав добавки с высоким ранним набором прочности Remicrete SP60 (состав № 3) прочностная характеристика при изгибе цементного раствора через 7 суток нормального твердения увеличивается на 35% , через 28 суток – на 30%, а при сжатии повышение прочности составляет соответственно по отношению к контрольному составу 42% и 22%.

Модифицированный цементный раствор, в котором однослойные углеродные нанотрубки диспергированы в растворе гиперпластификатора и гидрофобизатора (состав № 4), показал максимальный прирост прочности. Прочностная характеристика при изгибе на 7 и 28 сутки твердения увеличивается на 41% и 36%, соответственно, при сжатии повышение прочности составляет соответственно по отношению к контрольному составу на 55% и 46%.

Добавление углеродных многослойных нанотрубок в цементные камни по сравнению с однослойными характеризуется меньшим влиянием на прочность цементного композита, как при изгибе, так и при сжатии (состав № 5).

STUDY OF PROPERTIES OF NANOMATERIALS • ИССЛЕДОВАНИЕ СВОЙСТВ НАНОМАТЕРИАЛОВ

Таблица 2

Механические свойства модифицированного цементного камня

Номер состава

Водоцементное отношение контрольного образца, %

Прочность, МПа

при сжатии

при изгибе

7 суток

28 суток

7 суток

28 суток

1

42

100

39,96 100

39,96 100

4,19 100

4,96

100

2

32

76

44,90 122

44,90 122

5,04 130

5,76

126

3

32

76

50,35 129

50,35 129

5,67 135

6,44 130

4

32

76

51,95 146

51,95 146

5,91 141

6,74 136

5

32

76

47,95 119

47,95 119

4,94

118

5,90 119

Примечание . Над чертой – числовые значения, под чертой – относительные значения в % от контрольных.

ЗАКЛЮЧЕНИЕ

Установлено, что добавление комплексной нано-модифицированной добавки способствует ускорению набора прочности цементного композита на ранней

стадии твердения, уменьшению значения усадочных нанотрещин, что в свою очередь положительно характеризует качество контактов на границах цемент-обсадная колонна, порода-цемент.

Список литературы On the properties of nano-modified cement stones

  • Khavkin A.Ya. Nanoyavleniya i nanotekhnologii v dobyche nefti i gaza [Nanophenomena and nanotechnologies in oil and gas production]. Moscow – Izhevsk, NITS «Regulyarnaya i khaoticheskaya dinamika», Institut komp’yuternykh issledovaniy [SIC «Regular and chaotic dynamics», Institute for Computer Studies], 2010, 692 р. (In Russian).
  • Korolev Е. V. Osnovnye printsipy prakticheskoy nanotekhnologii V stroitelnom materialovedenii [The basic principles of practical nanotechnology in building materials]. Nanotekhnologii v stroitelstve: nauchnyy internet-zhurnal [Nanotechnology in Construction: A Scientific Internet-Journal], 2009, no. l, pp. 66–79. (In Russian).
  • Maeva I.S., Yakovlev G.I., Izryadnova O.V., Khasanov O.L. Strukturirovanie angidridovykh matrits uglerodnymi nanosistemami [Structuring anhydride matrices with carbon nanosystems]. Materialy XV Akademicheskikh chteniy RAASN [Materials of the XV Academic Readings of the RAACS], 2010, pp. 294–298. (In Russian).
  • Roko M.K., Williams R.S., Alivatos P. Nanotekhnologii v blizhaysheye desyatiletiye. Prognoznyye napravleniya issledovaniy [Nanotechnology in the coming decade. Forecast areas of research]. Moscow, Mir [World], 2002, 292 p. (in Russian).
  • Foster L.E. Nanotekhnologii. Nauka, innovatsii i vozmozhnosti [Nanotechnology. Science, Innovation and Opportunity]. Moscow, Tekhnosfera [Technosphere], 2008, 352 p. (In Russian).
  • Dixon J.B. Diversity of natural nanoparticles in soils and causative factors implied. Mineralogia - Special Papers: 4th Mid- European Clay Conference MECC, Zakopane, Poland, 2008, рp. 54.
  • Brat S., Singh P. Use of Nanorobots in Oil Industry. Maharashtra Institute of Technology. SPE Mumbai Section, 2006.
  • Falikman V.R. Nanomaterialy i nanotekhnologii v sovremennyh betonah [Nanomaterials and nanotechnologies in modern concretes]. Promyshlennoye i grazhdanskoye stroitel’stvo [Industrial and civil engineering], 2013, no. 1, рp. 31–34. (In Russian).
  • Ponomarev A.N. Nanobeton – ponyatiye i problemy. Sinergizm nanostrukturirovannykh tsementnykh vyazhushchikh i anizotropnykh dobavok [Nanoconcrete – the concept and problems. Synergism of nanostructuring cement binders and anisotropic additives]. Stroitel’nyye materialy [Construction materials], 2007, no. 6. (In Russian).
  • Voytovich V.A., Khryapchenkova I.N. Nanobeton v stroitelstve [Nanoconcrete in construction]. Stroitel’nyye materialy [Construction materials], 2016, no. 9, pр. 73–75. (In Russian).
  • Patrikeev L.N. Nanotekhnologii v energetike [Nanotechnologies in power engineering]. Nanoindustriya [Nanoindustry], 2008, no. 2, pp. 14–15. (In Russian).
  • Detlef B., Klaus S. Chemomechanical processing – the innovative way of integrating nanoparticles into industrial products. PETROTECH, New Delhi, India. 2009. р. 286.
  • Zaporotskova I.V. Uglerodnyye i neuglerodnyye nanomaterialy i kompozitnyye struktury na ikh osnove: stroyeniye i elektronnyye svoystva [Carbon and non-carbon nanomaterials and composite structures based on them: structure and electronic properties]. Volgograd. Izd-vo Volgogradskogo gos. un-va (Publishing house of the Volgograd State the university), 2009, 488 р. (In Russian).
  • Shah K.A., Najar F.A., Andrabi S.M.A., Islam S.S. Synthesis of carbon nanotubes for device applications. Asian Journal of Chemistry, 2017, vol. 29, no. 4, pp. 879–881.
  • Danoglidis P.A., Falara M.G., Maglogianni M., Konsta-Gdoutos M.S. Scalable processing of cementitious composites reinforced with carbon nanotubes (CNTs) and carbon nanofibers (CNFs). Nanotehnologii v stroitel’stve = Nanotechnologies in Construction. 2019, Vol. 11, no. 1, pp. 20–27. DOI: 10.15828/2075-8545-2019-11-1-20-27.
  • Yakovlev G.I., Pervushin G.N., Bur’yanov A.F., Kodolov V.I., Krutikov V.A., Fisher F.-B., Kerene Ya. Modifikatsiya porizovannykh tsementnykh matrits uglerodnymi nanotrubkami [Modification of porous cement matrices with carbon nanotubes]. Stroitel’nye materialy [Construction materials], 2009, no. 3, pp. 99–102. (In Russian).
  • Rayfti, S., Chegini, E. K. Highly selective and green oxidation of sulfides with urea hydrogen peroxide in the presence of MN (III) porphyrin supported onto carbon nanotubes. Macroheterocycles, 2016, vol. 9, no. 2, pp. 151–155. DOI: 10.6060/mhc151101r.
  • Khussein S.M.R.H., Hanfar A. Uglerodnyye nanotrubki: problemy i perspektivy ikh ispolzovaniya [Carbon nanotubes: problems and prospects for their use]. Uspekhi sovremennoy nauki [Advances in modern science], 2017, vol. 4, no. 4, рр. 166–169. (In Russian).
  • Mazurenko V.V., Rudenko A.N., Mazurenko V.G. Nanochastitsy, nanomaterialy, nanotekhnologii. Uchebnoye posobiye [Nanoparticles, nanomaterials, nanotechnologies. Tutoria]. Yekaterinburg. Federal’noye agentstvo po obrazovaniyu, Ural’skiy gos. tekhnicheskiy un-t – UPI im. pervogo Prezidenta Rossii B. N. Yel’tsina [Federal Agency for Education, Ural State Technical University – UPI them. first President of Russia B. N. Yeltsin], 2009, 83 р. (In Russian).
  • Mishchenko S.V., Tkachev A.G. Uglerodnyye nanomaterialy. Proizvodstvo, svoystva, primeneniye [Carbon nanomaterials. Production, properties, application]. Moscow, Mashinostroyeniye [Mechanical Engineering], 2008. (In Russian).
  • Shevchenko V.Ya. Institut khimii silikatov RAN. Issledovaniya v oblasti nanomira i nanotekhnologiy [Institute of Silicate Chemistry RAS. Research in the field of nanoworld and nanotechnology]. Rossiyskiye nanotekhnologii [Russian nanotechnology], 2008, vol. 3, no. 11–12, рр. 36–45. (In Russian).
  • Kehl A.V. Fullereny i uglerodnyye nanotrubki [Fullerenes and carbon nanotubes]. Innovatsionnaya nauka [Innovation science], 2016, № 11-3, pр. 23–25. (In Russian).
  • Salamatov V.I., Vasilyeva K.S. Uglerodnyye nanotrubki – osnova perspektivnykh nanomaterialov [Carbon nanotubes - the basis of promising nanomaterials]. Zhiznennyy tsikl konstruktsionnykh materialov (ot polucheniya do utilizatsii): materialy dokladov V Vserossiyskoy nauchno-tekhnicheskoy konferentsii s mezhdunarodnym uchastiyem [Life cycle of structural materials (from production to disposal): materials of reports of the Vth All-Russian Scientific and Technical Conference with international participation], 2015, рp. 247–254. (In Russian).
  • Lebeda Yu.V. Uglerodnyye nanotrubki: ikh svoystva i metody modifikatsii [Carbon nanotubes: their properties and methods of modification]. Nedelya nauki SPbGPU: materialy XLII nauchno-prakticheskoy konferentsii c mezhdunarodnym uchastiyem [SPbGPU Science Week: Proceedings of the XLII Scientific Practical Conference with international participation], 2014, pp. 30–32. (In Russian).
  • Tang Q., Huang J., Tian G. Dispersion of carbon nanotubes and research progress on mechanical properties of carbon nanotubes cement-based composites. Gongneng Cailiao, 2017. vol. 48, no. 6, pp. 42–49.
  • László I., Gyimesi B., Koltai J., Kürti J. Molecular dynamics simulation of carbon structures inside small diameter carbon nanotubes. Physica Status Solidi (B): Basic Solid State Physics, 2017, vol. 254, no. 11, pp. 170–206.
  • Gabidullin M.G., Khuzin A.F., Rakhimov R.Z., Tkachev A.G. Ultrazvukovaya obrabotka – effektivnyy metod dispergirovaniya uglerodnykh nanotrubok v ob”eme stroitelnogo kompozita [Ultrasonic processing is an effective method for dispersing carbon nanotubes in the bulk of a composite composite]. Stroitelnye materialy [Construction materials], 2013, no. 2, pp. 57–59. (In Russian).
  • Kiyamov I.K., Mingazov R.Kh., Vakhitova R.I., Kiyamova L.I., Sibgatullin A.A., Saracheva D.А., Mazankina D.V. K voprosu ob issledovanii tamponazhnykh rastvorov na osnove uglerodnykh nanotrubok i ikh vliyaniya na fazovyy sostav tsementnogo kamnya pri stroitel’stve skvazhin [On the study of cement slurries based on carbon nanotubes and their influence on the phase composition of cement stone in the construction of wells]. Materialy nauchnoy sessii uchenykh Al’met’yevskogo gosudarstvennogo neftyanogo institute [Materials of the scientific session of scientists of the Almetyevsk State Oil Institute], 2016, no. 2, pp. 48–50. (In Russian).
  • Semenov V.A., Rusakov S.V., Buzmakova M.M. Issledovaniye anizotropnoy provodimosti epoksidnogo polimera, modifitsirovannogo uglerodnymi nanotrubkami [Study of the anisotropic conductivity of epoxy polymer modified with carbon nanotubes]. Sbornik trudov 8-y Vserossiyskoy nauchnoy konferentsii s mezhdunarodnym uchastiyem im. I.F. Obraztsova i YU.G. Yanovskogo [Collection of works of the 8th All-Russian Scientific Conference with international participation. I.F. Obraztsova and Yu.G. Yanovsky], 2019, pp. 92–95. (In Russian).
  • Guz A.N., Rushchitskii Y.Y. Nanomaterials: on the mechanics of nanomaterials. International applied mechanics, 2003, vol. 39, no. 11, pp. 1271–1293. DOI: 10.1023/B:INAM.0000015598.53063.26.
Еще
Статья научная