On the theory of spaces of generalized bessel potentials

Автор: Dzagoeva Larisa F., Tedeev Anatoli F.

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 3 т.24, 2022 года.

Бесплатный доступ

The purpose of the article is to introduce norms in the space of generalized Bessel potentials based on the weighted Dirichlet integrals. First, we define weighted Dirichlet integral and show that this integral can be represented using multidimensional generalised translation. Next, we demonstrate that this norm does not allow to define function spaces of arbitrary fractional order of smoothness. The potential theory originates from the theory of electrostatic and gravitational potentials and the Laplace, wave, Helmholtz, and Poisson equations. The famous Riesz potentials are known to be realizations of the real negative powers of the Laplace and wave operators. In the meantime, a lot of attention in the potential theory is given to the Bessel potential. Generalization in the article is achieved by considering the Laplace-Bessel operator which is constructed on the basis of the singular Bessel differential operator. The theory of singular differential equations containing the Bessel operator and the theory of the corresponding weighted function spaces belong to those mathematical areas, the theoretical and applied significance of which can hardly be overestimated.

Еще

Degenerate parabolic equation, inhomogeneous density, weighted embedding, large time behavior

Короткий адрес: https://sciup.org/143179307

IDR: 143179307   |   DOI: 10.46698/p6936-3163-2954-s

Список литературы On the theory of spaces of generalized bessel potentials

  • Kamin, S. and Rosenau, P. Non-Linear Diffusion in Finite Mass Medium, Communications on Pure Applied Mathematics, 1982, vol. 35, no. 1, pp. 113-127. DOI: 10.1002/CPA.3160350106.
  • Kamin, S. and Rosenau, P. Propagation of Thermal Waves in an Inhomogeneous Medium, Communications on Pure and Applied Mathematics, 1981, vol. 34, no. 6, pp. 831-852. DOI: 10.1002/CPA.3160340605.
  • Galaktionov, V. A., Kamin, S., Kersner, R. and Vazquez, J. L. Intermediate Asymptotics for Inhomogeneous Nonlinear Heat Conduction, Journal of Mathematical Sciences, 2004, vol. 120, no. 3, pp. 1277-1294. DOI: 10.1023/B:J0TH.0000016049.94192.aa.
  • Guedda, M., Hihorst, D. and Peletier, M. A. Disappearing Interfaces in Nonlinear Diffusion, Advances in Mathematical Sciences and Applications, 1997, vol. 7, pp. 695-710.
  • Reyes, G. and Vazquez, J. L. The Cauchy Problem for the Inhomogeneous Porous Medium Equation, Networks and Heterogeneous Media, 2006, vol. 1, no. 2, pp. 337-351. DOI: 10.3934/nhm.2006.1.337.
  • Reyes, G. and Vazquez, J. L. Long Time Behavior for the Inhomogeneous PME in a Medium with Slowly Decaying Density, Communications on Pure and Applied Analysis, 2009, vol. 8, no. 2, pp. 493-508. DOI: 10.3934/cpaa.2009.8.493.
  • Kamin, S., Reyes, G. and Vazquez, J. L. Long Time Behavior for the Inhomogeneous PME in a Medium with Rapidly Decaying Density, Discrete and Continuous Dynamical Systems, 2010, vol. 26, no. 2, pp. 521-549. DOI: 10.3934/dcds.2010.26.521.
  • Kamin, S. and Kersner, R. Disappearance of Interfaces in Finite Time, Meccanica, 1993, vol. 28, no. 2, pp. 117-120. DOI: 10.1007/BF01020323.
  • Tedeev, A. F. Conditions for the Time Global Existence and Nonexistence of a Compact Support of Solutions to the Cauchy Problem for Quasilinear Parabolic Equations, Siberian Mathematical Journal, 2004, vol. 45, no. 1, pp. 155-164. DOI: 10.1023/B:SIMJ.0000013021.66528.b6.
  • Tedeev, A. F. The Interface Blow-Up Phenomenon and Local Estimates for Doubly Degenerate Parabolic Equations, Applicable Analysis, 2007, vol. 86, no. 6, pp. 755-782. DOI: 10.1080/00036810701435711.
  • Martynenko, A. V. and Tedeev, A. F. On the Behaviour of Solutions to the Cauchy Problem for a Degenerate Parabolic Equation with Inhomogeneous Density And a Sources, Computational Mathematics and Mathematical Physics, 2008, vol. 48, no. 7, pp. 1145-1160. DOI: 10.1134/S0965542508070087.
  • Andreucci, D., Cirmi, G. R., Leonardi, S. and Tedeev, A. F. Large Time Behavior of Solutions to the Neumann Problem for a Quasilinear Second Order Degenerate Parabolic Equation in Domains with Noncompact Boundary, Journal of Differential Equations, 2001, vol. 174, no. 2, pp. 253-288. DOI: 10.1006/jdeq.2000.3948.
  • Kalashnikov, A. S. Some Problems of the Qualitative Theory of Non-Linear Degenerate Second-Order Parabolic Equations, Russian Mathematical Surveys, 1987, vol. 42, no. 2, pp. 169-222. DOI: 10.1070/RM1987v042n02ABEH001309.
  • Caffarelli, L., Kohn, R. and Nirenberg, L. First Order Interpolation Inequalities with Weights, Composito Mathematica, 1984, vol. 53, no. 3, pp. 259-275.
  • Di Benedetto, E. and Herrero, M. A. On the Cauchy Problem and Initial Traces for a Degenerate Parabolic Equation, Transactions of the American Mathematical Society, 1989, vol. 314, no. 1, pp. 187-224. DOI: 10.2307/2001442.
  • Andreucci, D. and Tedeev, A. F. Universal Bounds at the Blow-Up Time for Nonlinear Parabolic Equations, Advances in Differential Equations, 2005, vol. 10, no. 1, pp. 89-120.
  • Andreucci, D. and Tedeev, A. F. Optimal Decay Rate for Degenerate Parabolic Equations on Noncompact Manifolds, Methods and Applications of Analysis, 2015, vol. 22, no. 4, pp. 359-376. DOI: 10.4310/MAA.2015.v22.n4.a2
  • Ladyzhenskaya, O. A., Solonnikov, V. A. and Ural'ceva, N. N. Linear and Quasi-Linear Equations of Parabolic Type, Translations of Mathematical Monographs, vol. 23, Providence, R. I., American Mathematical Society, 1968.
Еще
Статья научная