One functional-analytical idea by Alexandrov in convex geometry

Автор: Kutateladze Semen Samsonovich

Журнал: Владикавказский математический журнал @vmj-ru

Статья в выпуске: 3 т.4, 2002 года.

Бесплатный доступ

The functional-analytical approach by A. D. Alexandrov is discussed to the Minkowski and Blaschke structures making the set of convex compact figures into a vector space. The resulting analytical possibilities are illustrated by the isoperimetric type problems of finding convex figures separated by current hyperplanes similar to the Urysohn and double bubble problems.

Короткий адрес: https://sciup.org/14318059

IDR: 14318059

Список литературы One functional-analytical idea by Alexandrov in convex geometry

  • Alexandrov A. D. Selected Works. Part 1: Selected Scientific Papers.-London etc.: Gordon and Breach, 1996.-322 p.
  • Foisy J., Alfaro M., Brock J., Hodges N., Zimba J. The standard double soap bubble in $\Bbb R^2$ uniquely minimizes perimeter//Pacific J. Math.-1993.-V. 159, № 1.-P. 47-59.
  • Pogorelov A. V. Imbedding a `soap bubble' into a tetrahedron//Math. Notes.-1994.-V. 56, № 2.-P. 824-826.
  • Hutchings M., Morgan F., Ritore M., Ros A. {Proof of the double bubble conjecture//Electron. Res. Announc. Amer. Math. Soc.-2000.-V. 6, № 6.-P. 45-49.
  • Urysohn P. S. Dependence between the average width and volume of convex bodies//Mat. Sb.-1924.-V. 31, № 3.-P. 477-486. [Russian]
  • Kutateladze S. S. Parametrization of isoperimetric-type problems in convex geometry//Siberian Adv. Math.-1999.-V. 9, № 3.-P. 115-131.
  • Kutateladze S. S. On the isoperimetric type problems with current hyperplanes//Siberian Math. J. (to be published).-2002.-V. 43, № 4.-P. 132-144. [Russian]
Статья научная