Fractional integrals and differentials of variable order in holder spaces H (X, T)
Автор: Vakulov Boris G., Kochurov Evgeny S.
Журнал: Владикавказский математический журнал @vmj-ru
Статья в выпуске: 4 т.12, 2010 года.
Бесплатный доступ
We consider generalized Holder spaces of functions on the segment of real axis, whose local continuity modulus has a dominant which may vary from a point to point. We establish theorems on the mapping properties of fractional integrals of variable order, from such a variable generalized Holder space to another one with a "better" dominant, and similar mapping properties of fractional differentials of variable order from such a space into the space with "worse" dominant. Variable order can take values between zero and unity.
Generalized continuity modulus, generalized holder spaces with variable characteristics, fractional integrals, fractional differentials
Короткий адрес: https://sciup.org/14318324
IDR: 14318324