δ-Опиоидный рецептор – мишень для создания пептидных препаратов, повышающих резистентность сердца к реперфузии

Автор: Мухомедзянов А.В., Попов С.В., Нарыжная Н.В., Сиротина М.А., Маслов Л.Н., Курбатов Б.К., Горбунов А.С., Килин М., Кан А., Крылатов А.В., Подоксёнов Ю.К., Азев В.Н., Ласукова Т.В., Суфианова Г.З., Хлёсткина М.С.

Журнал: Сибирский журнал клинической и экспериментальной медицины @cardiotomsk

Рубрика: Обзоры и лекции

Статья в выпуске: 1 т.39, 2024 года.

Бесплатный доступ

Анализ опубликованных данных и результатов собственных исследований показал, что активация периферических δ2-опиоидных рецепторов (δ2-ОР) повышает толерантность сердца к реперфузии. Установлено, что δ2-ОР находятся в кардиомиоцитах. Эндогенные опиоиды не участвуют в регуляции устойчивости сердца к реперфузии у неадаптированных крыс. Инфаркт-лимитирующий эффект агониста δ2-ОР дельторфина II зависит от активации протеинкиназ – ПКСδ, ERK1/2, PI3K, ПКG. Гипотетическими конечными эффекторами кардиопротекторного действия дельторфина II являются саркКАТФ-каналы и MPT-поры.

Сердце, реперфузия, инфаркт миокарда, опиоидные рецепторы, киназы, КАТФ-каналы, MPT-пора

Короткий адрес: https://sciup.org/149144770

IDR: 149144770   |   DOI: 10.29001/2073-8552-2022-585

Список литературы δ-Опиоидный рецептор – мишень для создания пептидных препаратов, повышающих резистентность сердца к реперфузии

  • Megaly M., Pershad A., Glogoza M., Elbadawi A., Omer M., Saad M. et al. Use of intravascular imaging in patients with ST-segment elevation acute myocardial infarction. Cardiovasc. Revasc. Med. 2021;30:59-64. https://doi.org/10.1016/j.carrev.2020.09.032.
  • Ya’qoub L., Gad M., Saad A.M., Elgendy I.Y., Mahmoud A.N. National trends of utilization and readmission rates with intravascular ultrasound use for ST-elevation myocardial infarction. Catheter. Cardiovasc. Interv. 2021;98(1):1-9. https://doi.org/10.1002/ccd.29524.
  • Garcia S., Schmidt C.W., Garberich R., Henry T.D., Bradley S.M., Brilakis E.S. et al. Temporal changes in patient characteristics and outcomes in ST-segment elevation myocardial infarction 2003-2018. Catheter. Cardiovasc. Interv. 2021;97(6):1109-1117. https://doi.org/10.1002/ccd.28901.
  • Maslov L.N., Popov S.V., Mukhomedzyanov A.V., Naryzhnaya N.V., Voronkov N.S., Ryabov V.V. et al. Reperfusion cardiac injury: Receptors and the signaling mechanisms. Curr. Cardiol. Rev. 2022;18(5):63-79. https://doi.org/10.2174/1573403X18666220413121730.
  • Acharya D. Predictors of outcomes in myocardial infarction and cardiogenic shock. Cardiol. Rev. 2018;26(5):255-266. https://doi.org/10.1097/CRD.0000000000000190.
  • Sambola A., Elola F.J., Buera I., Fernández C., Bernal J.L., Ariza A. et al. Sex bias in admission to tertiary-care centres for acute myocardial infarction and cardiogenic shock. Eur. J. Clin. Invest. 2021;51(7):e13526. https://doi.org/10.1111/eci.13526.
  • Gross E.R., Hsu A.K., Gross G.J. Opioid-induced cardioprotection occurs via glycogen synthase kinase beta inhibition during reperfusion in intact rat hearts. Circ. Res. 2004;94(7):960-966. https://doi.org/10.1161/01.RES.0000122392.33172.09.
  • Gross E.R., Hsu A.K., Gross G.J. Acute methadone treatment reduces myocardial infarct size via the delta-opioid receptor in rats during reperfusion. Anesth. Analg. 2009;109(5):1395-1402. https://doi.org/10.1213/ANE.0b013e3181b92201.
  • Метелица В.И. Справочник по клинической фармакологии сердечно-сосудистых лекарственных средств. М.: Медпрактика; 1996:784.
  • Маслов Л.Н., Лишманов Ю.Б. Проницаемость гематоэнцефалического барьера для опиоидных пептидов. Экспериментальная и клиническая фармакология. 2017;80(6):39-44. https://doi.org/10.30906/0869-2092-2017-80-6-39-44.
  • Jiang L., Hu J., He S., Zhang L., Zhang Y. Spinal neuronal NOS signaling contributes to morphine cardioprotection in ischemia reperfusion injury in rats. J. Pharmacol. Exp. Ther. 2016;358(3):450-456. https://doi.org/10.1124/jpet.116.234021.
  • Lu Y., Hu J., Zhang Y., Dong C.S., Wong G.T. Remote intrathecal morphine preconditioning confers cardioprotection via spinal cord nitric oxide/cyclic guanosine monophosphate/protein kinase G pathway. J. Surg. Res. 2015;193(1):43-51. https://doi.org/10.1016/j.jss.2014.08.014.
  • Lishmanov Yu.B., Ugdyzhekova D.S., Maslov L.N. Prevention of experimental epinephrine-induced arrhythmias with agonists of δ1 - and δ2 -opiate receptors. Bull. Exp. Biol. Med. 1997;124(3):873-875. https://doi.org/10.1007/BF02446988.
  • Patel H.H., Hsu A., Moore J., Gross G.J. BW373U86, a delta opioid agonist, partially mediates delayed cardioprotection via a free radical mechanism that is independent of opioid receptor stimulation. J. Mol. Cell. Cardiol. 2001;33(8):1455-1465. https://doi.org/10.1006/jmcc.2001.1408.
  • Maslov L.N., Khaliulin I., Oeltgen P.R., Naryzhnaya N.V., Pei J.-M., Brown S.A. et al. Prospects of creation of cardioprotective and antiarrhythmic drugs based on opioid receptor agonists. Med. Res. Rev. 2016;36(5):871-923. https://doi.org/10.1002/med.21395.
  • Maslov L.N., Lishmanov Yu.B., Oeltgen P.R., Barzakh E.I., Krylatov A.V., Govindaswami M. Activation of peripheral δ2 opioid receptors increases cardiac tolerance to ischemia/reperfusion injury: Involvement of protein kinase C, NO-synthase, KATP channels and the autonomic nervous system. Life Sci. 2009;84(19-20):657-663. https://doi.org/10.1016/j.lfs.2009.02.016.
  • Peart J.N., Patel H.H., Gross G.J. Delta-opioid receptor activation mimics ischemic preconditioning in the canine heart. J. Cardiovasc. Pharmacol. 2003;42(1):78-81. https://doi.org/10.1097/00005344-200307000-00012.
  • Fryer R.M., Wang Y., Hsu A.K., Nagase H., Gross G.J. Dependence of δ1 -opioid receptor-induced cardioprotection on a tyrosine kinase-dependent but not a Src-dependent pathway. J. Pharmacol. Exp. Ther. 2001;299(2):477-482.
  • Maslov L.N., Mukhomedzyanov A.V., Tsibulnikov S.Y., Suleiman M.S., Khaliulin I., Oeltgen P.R. Activation of peripheral δ2-opioid receptor prevents reperfusion heart injury. Eur. J. Pharmacol. 2021;907:174302. https://doi.org/10.1016/j.ejphar.2021.174302.
  • Heusch G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ. Res. 2015;116(4):674-699. https://doi.org/10.1161/CIRCRESAHA.116.305348.
  • de Miranda D.C., de Oliveira Faria G., Hermidorff M.M., Dos Santos Silva F.C., de Assis LVM, Isoldi M.C. Pre- and Post-Conditioning of the Heart: An Overview of Cardioprotective Signaling Pathways. Curr. Vasc. Pharmacol. 2021;19(5):499-524. https://doi.org/10.2174/1570161119666201120160619.
  • Gross E.R., Hsu A.K., Gross G.J. The JAK/STAT pathway is essential for opioid-induced cardioprotection: JAK2 as a mediator of STAT3, Akt, and GSK-3β. Am. J. Physiol. Heart Circ. Physiol. 2006;291(2):H827-H834. https://doi.org/10.1152/ajpheart.00003.2006.
  • Dorsch M., Behmenburg F., Raible M., Blase D., Grievink H., Hollmann M.W. et al. Morphine-induced preconditioning: involvement of protein kinase A and mitochondrial permeability transition pore. PLoS One. 2016;11(3):e0151025. https://doi.org/10.1371/journal.pone.0151025.
  • Li L., Zhang H., Li T., Zhang B. Involvement of adenosine monophosphate-activated protein kinase in morphine-induced cardioprotection. J. Surg. Res. 2011;169(2):179-187. https://doi.org/10.1016/j.jss.2009.11.007.
  • Kim J.H., Jang Y.H., Chun K.J., Kim J., Park Y.H., Kim J.S. et al. Kappa-opioid receptor activation during reperfusion limits myocardial infarction via ERK1/2 activation in isolated rat hearts. Korean J. Anesthesiol. 2011;60(5):351-356. https://doi.org/10.4097/kjae.2011.60.5.351.
  • Wu X., Zhang B., Fan R., Zhao L., Wang Y., Zhang S. et al. U50,488H inhibits neutrophil accumulation and TNF-α induction induced by ischemia-reperfusion in rat heart. Cytokine. 2011;56(2):503-507. https://doi.org/10.1016/j.cyto.2011.07.015.
  • Gross G.J., Hsu A., Nithipatikom K., Pfeiffer A.W., Bobrova I., Bissessar E. Acute and chronic cardioprotection by the enkephalin analogue, Eribis peptide 94, is mediated via activation of nitric oxide synthase and adenosine triphosphate-regulated potassium channels. Pharmacology. 2012;90(1-2):110-116. https://doi.org/10.1111/j.1745-7254.2005.00100.x.
  • Zhang Y., Chen Z.W., Girwin M., Wong T.M. Remifentanil mimics cardioprotective effect of ischemic preconditioning via protein kinase C activation in open chest of rats. Acta Pharmacol. Sin. 2005;26(5):546-550. https://doi.org/10.1111/j.1745-7254.2005.00100.x.
  • Popov S.V., Mukhomedzyanov A.V., Maslov L.N., Naryzhnaya N.V., Kurbatov B.K., Prasad N.R. et al. The infarct-reducing effect of the δ2 opioid receptor agonist deltorphin II: The molecular mechanism. Membranes (Basel). 2023;13(1):63. https://doi.org/10.3390/membranes13010063.
  • Maslov L.N., Lishmanov Y.B. The anti-arrhythmic effect of D-Ala2, Leu5, Arg6-enkephalin and its possible mechanism. Int. J. Cardiol. 1993;40(2):89-94. https://doi.org/10.1016/0167-5273(93)90269-m.
  • Li D.Y., Gao S.J., Sun J., Zhang L.Q., Wu J.Y., Song F.H. et al. Targeting the nitric oxide/cGMP signaling pathway to treat chronic pain. Neural. Regen Res. 2023; 18(5):996-1003. https://doi.org/10.4103/1673-5374.355748.
  • Krylatov A.V., Tsibulnikov S.Y., Mukhomedzyanov A.V., Boshchenko A.A., Goldberg V.E., Jaggi A.S. et al. The role of natriuretic peptides in the regulation of cardiac tolerance to ischemia/reperfusion and postinfarction heart remodeling. J. Cardiovasc. Pharmacol. Ther. 2021;26(2):131-148. https://doi.org/10.1177/1074248420952243.
  • Wu G., Sharina I., Martin E. Soluble guanylyl cyclase: Molecular basis for ligand selectivity and action in vitro and in vivo. Front. Mol. Biosci. 2022;9:1007768. https://doi.org/10.3389/fmolb.2022.1007768.
  • Xu J., Zhu K., Wang Y., Chen J. The dual role and mutual dependence of heme/HO-1/Bach1 axis in the carcinogenic and anti-carcinogenic intersection. J. Cancer Res. Clin. Oncol. 2023;149(1):483-501. https://doi.org/10.1007/s00432-022-04447-7.
  • Castany S., Carcolé M., Leánez S., Pol O. The antinociceptive effects of a δ-opioid receptor agonist in mice with painful diabetic neuropathy: Involvement of heme oxygenase 1. Neurosci. Lett. 2016;614:49-54. https://doi.org/10.1016/j.neulet.2015.12.059.
  • Stagni E., Bucolo C., Motterlini R., Drago F. Morphine-induced ocular hypotension is modulated by nitric oxide and carbon monoxide: role of mu3 receptors. J. Ocul. Pharmacol. Ther. 2010;26(1):31-35. https://doi.org/10.1089/jop.2009.0081.
  • Krylatov A.V., Maslov L.N., Voronkov N.S., Boshchenko A.A., Popov S.V., Gomez L. et al. Reactive oxygen species as intracellular signaling molecules in the cardiovascular system. Curr. Cardiol. Rev. 2018;14(4):290-300. https://doi.org/10.2174/1573403X14666180702152436.
  • Tsutsumi Y.M., Yokoyama T., Horikawa Y., Roth D.M., Patel H.H. Reactive oxygen species trigger ischemic and pharmacological postconditioning: in vivo and in vitro characterization. Life Sci. 2007;81(15):1223- 1227. https://doi.org/10.1016/j.lfs.2007.08.031.
  • Rong F., Peng Z., Ye M.X., Zhang Q.Y., Zhao Y., Zhang S.M., et al. Myocardial apoptosis and infarction after ischemia/reperfusion are attenuated by κ-opioid receptor agonist. Arch. Med. Res. 2009;40(4):227-234. https://doi.org/10.1016/j.arcmed.2009.04.009.
  • Peart J.N., Gross E.R., Reichelt M.E., Hsu A., Headrick J.P., Gross G.J. Activation of kappa-opioid receptors at reperfusion affords cardioprotection in both rat and mouse hearts. Basic Res. Cardiol. 2008;103(5):454- 463. https://doi.org/10.1007/s00395-008-0726-z.
  • Jang Y., Xi J., Wang H., Mueller R.A., Norfleet E.A., Xu Z. Postconditioning prevents reperfusion injury by activating δ-opioid receptors. Anesthesiology. 2008;108(2):243-250. https://doi.org/10.1097/01.anes.0000299437.93898.4a.
  • Kim J.H., Chun K.J., Park Y.H., Kim J., Kim J.S., Jang Y.H. et al. Morphine-induced postconditioning modulates mitochondrial permeability transition pore opening via delta-1 opioid receptors activation in isolated rat hearts. Korean J. Anesthesiol. 2011;61(1):69-74. https://doi.org/10.4097/kjae.2011.61.1.69.
Еще
Статья научная