Описание вязкоупругих свойств низко- и высоконаполненных эластомерных нанокомпозитов
Автор: Кислицын В.Д., Мохирева К.А.
Журнал: Вестник Пермского университета. Серия: Математика. Механика. Информатика @vestnik-psu-mmi
Рубрика: Математика
Статья в выпуске: 4 (55), 2021 года.
Бесплатный доступ
Найдено аналитическое решение изменения диссипативной (неупругой) части тензора напряжений при постоянной скорости одноосного нагружения материала в рамках новой термодинамической модели поведения вязкоупругих материалов. Были проведены одноосные испытания с вложенными циклами нагружения для образцов низко- и высоконаполненных эластомерных нанокомпозитов с разными наполнителями. На каждом участке нагрузки и разгрузки задавались временные выдержки, позволяющие фиксировать проходящие в материале релаксационные процессы, что дает возможность экспериментально находить равновесную кривую деформирования. Полученную равновесную кривую можно описать с помощью упругого потенциала. Определив равновесную (упругую) и найдя диссипативную (неупругую) части тензора напряжений, нами с высокой точностью был описан вязкоупругий отклик рассмотренных эластомерных материалов. Приведены графики теоретической и экспериментальной кривых деформирования образцов эластомерных нанокомпозитов. Данная статья является расширенной версией работы, представленной на конференции "Математика и междисциплинарные исследования 2021" [1].
Вязкоупругие свойства, конечные деформации, эластомерные нанокомпозиты
Короткий адрес: https://sciup.org/147245522
IDR: 147245522 | DOI: 10.17072/1993-0550-2021-4-19-24
Список литературы Описание вязкоупругих свойств низко- и высоконаполненных эластомерных нанокомпозитов
- Кислицын В.Д., Мохирева К.А. Описание вязкоупругих свойств эластомерного материала в случае одноосного растяжения с постоянной скоростью: материалы Всерос. науч.-практ. конф. молодых ученых с междунар. участием ʺМатематика и междисциплинарные исследованияʺ. 2021. С. 59-63. EDN: PSXWBU
- Reese S., Govindjee S. A theory of finite viscoelasticity and numerical aspects // International Journal of Solids and Structures. 1998. Vol. 35 (26/27). P. 3455-3482. EDN: ABEVLH
- Amin A. F. M. S., Lion A., Sekita S., Okui Y. Nonlinear dependence of viscosity in modeling the rate-dependent response of natural and high damping rubbers in compression and shear: Experimental identification and numerical verification // International Journal of Plasticity. 2006. Vol. 22 (9). P. 1610-1657. EDN: XSXXFJ
- Petiteau J.-C., Verron E., Othman R., Sourne H., Sigrist J.-F., Barras G. Large strain rate-dependent response of elastomers at different strain rates: Convolution integral vs. internal variable formulations // Mechanics of Time-Dependent Materials. 2013. Vol. 17 (3). P. 349-367.
- Кислицын В.Д., Мохирева К.А., Шадрин В.В., Свистков А.Л. Исследование и моделирование вязкоупругого поведения эластомерных нанокомпозитов // Вестник ПНИПУ. Механика. 2021. № 2. С. 76-87. EDN: DNTBCI
- Reese S. A micromechanically motivated material model for the thermoviscoelastic material behaviour of rubber-like polymers // International Journal of Plasticity. 2003. Vol. 19 (7). P. 909-940.
- Linder. C., Tkachuk M., Miehe C. A micro-mechanically motivated diffusion-based transient network model and its incorporation into finite rubber viscoelasticity // Journal of the Mechanics and Physics of Solids. 2011. Vol. 59 (10). P. 2134-2156.
- Кислицын В.Д., Свистков А.Л., Мохирева К.А., Шадрин В.В. Описание поведения вязкоупругих материалов в рамках новой термодинамической модели // Математическое моделирование в естественных науках: тезисы XXX всероссийской школы-конференции. 2021 [в печати].
- Кислицын В.Д., Шадрин В.В., Осоргина И.В., Свистков А.Л. Анализ механических свойств полиуретановых материалов, изготовленных по растворной и литьевой технологиям // Вестник Пермского университета. Физика. 2020. № 1. С. 17-25. EDN: MYMZNN
- Mokhireva K.A., Svistkov A.L. A new approach to describe the elastic behavior of filled rubber-like materials under complex uniaxial loading // International Journal of Plasticity. 2020. Vol. 202. P. 816-821.