Optimal control of solutions to the initial-final problem for the model of linear waves in a plasma
Бесплатный доступ
The optimal control problem for a Sobolev type equation of higher order with a relatively polynomially bounded operator pencil is investigated in the paper. The results are applied to the study of the optimal control of solutions to the initial-final problem for the model of linear waves in plasma. The first results on the investigation of equation that describes the linear ion-acoustic waves in an unmagnetized plasma and on the study of some properties of these waves were obtained by Yu.D. Pletner. The initial-final conditions posed for the fourth-order Sobolev type equation are the generalization of the conditions in the Cauchy problem that is unsolvable at the arbitrary initial values. The research is based on the phase space method developed by G.A. Sviridiuk and the theory of relatively polynomially bounded operator pencil developed by A.A. Zamyshlyaeva. The article considers an equation that describes ion-acoustic waves in a plasma in an external magnetic field.
Уравнения соболевского типа высокого порядка c относительно полиномиально ограниченным пучком операторов, sobolev type equations of higher order with a relatively polynomially bounded operator pencil, model of linear waves in a plasma, optimal control problem, initial-final conditions
Короткий адрес: https://sciup.org/147232827
IDR: 147232827 | DOI: 10.14529/mmph190403
Список литературы Optimal control of solutions to the initial-final problem for the model of linear waves in a plasma
- Линейные и нелинейные уравнения соболевского типа / А.Г. Свешников, А.Б. Альшин, М.О. Корпусов, Ю.Д. Плетнер. - М.: ФИЗМАТЛИТ, 2007. - 736 с.
- Замышляева, А.А. Математические модели соболевского типа высокого порядка / А.А. Замышляева // Вестник ЮУрГУ. Серия: "Математическое моделирование и программирование". - 2014. - Т. 7, № 2. - С. 5-28.
- Sagadeeva, M.A. Optimal Control of Solutions of a Multipoint Initial-Finish Problem for Non-Autonomous Evolutionary Sobolev Type Equation / M.A. Sagadeeva, S.A. Zagrebina, N.A. Manakova // Evolution Equations and Control Theory. - 2019. - Vol. 8, № 3. - P. 473-488.
- Manakova, N.A. Mathematical Model of the Start Control of Electric Field Potential in Conducting Medium without Dispersion Considering Relaxation / N.A. Manakova, E.A. Bogatyreva // 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). - Chelyabinsk, 2016. - P. 1-5.
- Zamyshlyaeva, A.A. Optimal Control of Solutions to the Showalter-Sidorov Problem in a Model of Linear Waves in Plazma / A.A. Zamyshlyaeva, О.N. Tsyplenkova // Journal of Computational and Engineering Mathematics. - 2018. - Vol. 5, № 4. - P. 46-57.
- Богатырева, Е.А. Численное моделирование процесса неравновесной противоточной капиллярной пропитки / Е.А. Богатырева, Н.А. Манакова // Журнал вычислительной математики и математической физики. - 2016. - Т. 56, № 1. - С. 125-132.
- Keller, А.V. Parallelization of Numerical Algorithm for Optimum Dynamic Measurement Problem Solution / A.V. Keller, A.A. Ebel // Proc. 2nd International Ural Conference on Measurements. - 2017. - p. 372-377.
- Zakirova, G.A. Inverse Spectral Problems and Mathematical Models of Continuum Mechanics / G.A. Zakirova // Вестник ЮУрГУ. Серия "Математическое моделирование и програмирование". - 2019. - Т. 12, № 2. - С. 5-24.
- Shafranov, D.E. The Barenblatt-Zheltov-Kochina Model with the Showalter-Sidorov Condition and Additive "white noise" in Spaces of Differential Forms on Riemannian Manifolds without Boundary / D.E. Shafranov, O.G. Kitaeva // Global and Stochastic Analysis. - 2018. - Vol. 5, no. 2. - C. 139-152.
- Sviridyuk, G.A. Linear Sobolev Type Equations and Degenerate Semigroups of Operators / G.A. Sviridyuk, V.E. Fedorov. - Utrecht; Boston; Köln; Tokyo: VSP, 2003. - 216 p.
- Manakova, N.А. An Optimal Control of the Solutions of the Initial-Final Problem for Linear Sobolev Type Equations with Strongly Relatively p-Radial Operator / N.А. Manakova, G.А. Sviridyuk // Semigroup of Operators - Theory and Applications. - 2015. - P. 213-224.
- Свиридюк, Г.А. Оптимальное управление линейными уравнениями типа Соболева с относительно p-секториальными операторами / Г.А. Свиридюк, А.А. Ефремов // Дифференциальные уравнения. - 1995. - Т. 31, № 11. - С. 1912-1919.
- Zamyshlyaeva, A.A. Optimal Control of Solutions to the Showalter-Sidorov Problem for the Sobolev Type Equation of Higher Order / A.A. Zamyshlyaeva, O.N. Tsyplenkova, E.V. Bychkov // Proc. 2nd International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2016. - 2016. - P. 1-4.
- Favini, A. Multipoint Initial-Final Value Problems for Dynamical Sobolev-type Equations in the Space of Noises / A. Favini, S.A. Zagrebina, G.A. Sviridyuk // Electronic Journal of Differential Equations. - 2018. - Vol. 2018. - P. 128.
- Замышляева, А.А. Линейные уравнения соболевского типа высокого порядка / А.А. Замышляева. - Челябинск: Изд. центр ЮУрГУ, 2012. - 107 c.