Optimal control of solutions to the multipoint initial-final problem for nonstationary relatively bounded equations of Sobolev type

Бесплатный доступ

We study the problem of optimal control of solutions to an operator-differential equation, which is not solved with respect to the time derivative, together with a multipoint initial-final condition. In this case, one of the operators in the equation is multiplied by a scalar function of time. By the properties of the operators involved, the stationary equation has analytical resolving group. We construct a solution to the multipoint initial-final problem for the nonstationary equation. We show that a unique optimal control of solutions to this problem exists. Apart from the introduction and bibliography, the article consists of three sections. The first section provides the essentials of the theory of relatively p-bounded operators. In the second section we construct a strong solution to the multipoint initial-final problem for nonstationary Sobolev-type equations. The third section contains our proof that there exists a unique optimal control of solutions to the multipoint initial-final problem.

Еще

Optimal control, multipoint initial-final problem, sobolev-type equations, relatively bounded operator

Короткий адрес: https://sciup.org/147159273

IDR: 147159273   |   DOI: 10.14529/mmp140314

Список литературы Optimal control of solutions to the multipoint initial-final problem for nonstationary relatively bounded equations of Sobolev type

  • Favini, A. Degenerate Differential Equations in Banach Spaces/A. Favini, A. Yagi. -N.Y.; Basel; Hong Kong: Marcel Dekker, Inc, 1999. -236 pp.
  • Demidenko, G.V. Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative/G.V. Demidenko, S.V. Uspenskii. -N.Y; Basel; Hong Kong: Marcel Dekker Inc, 2003. -239 p.
  • Sviridyuk, G.A. Linear Sobolev Type Equations and Degenerate Semigroups of Operators/G.A. Sviridyuk, V.E. Fedorov. -Utrecht; Boston; Koln: VSP, 2003. -216 p.
  • Al'shin, A.B. Blow-up in Nonlinear Sobolev Type Equations/A.B. Al'shin, M.O. Korpusov, A.G. Sveshnikov. -Berlin: de Gruyter, 2011. -648 p.
  • Загребина, С.А. Многоточечная начально-конечная задача для стохастической модели Баренблатта-Желтова-Кочиной/С.А. Загребина//Вестник ЮУрГУ. Серия: Компьютерные технологии, управление, радиоэлектроника. -2013. -Т. 13, № 4. -C. 103-111.
  • Сагадеева, М.А. Оптимальное управление решениями нестационарных уравнений соболевского типа специального вида в относительно секториальном случае/М.А. Сагадеева, А.Д. Бадоян//Вестник МаГУ. Математика. -2013. -Вып. 15. -C. 68-80.
  • Sagadeeva, M.A. The Problem of Optimal Control over Solutions of the Nonstationary Barenblatt-Zheltov-Kochina Model/M.A. Sagadeeva, A.D. Badoyan//Вестник ЮУрГУ. Серия: Компьютерные технологии, управление, радиоэлектроника. -2014. -Т. 14, № 2. -C. 5-11.
  • Zagrebina, S. The Generalized Splitting Theorem for Linear Sobolev type Equations in Relatively Radial Case/S. Zagrebina, M. Sagadeeva//Известия Иркутского государственного университета. Серия: Математика. -2014. -Т. 7. -С. 19-33.
  • Келлер, А.В. Относительно спектральная теорема/А.В. Келлер//Вестник Челябинского государственного университета. Серия Математика. Механика. -1996. -№ 1 (3). -C. 62-66.
Еще
Краткое сообщение