Optimal recovery of a harmonic function from inaccurate information on the values of the radial integration operator
Автор: Bagramyan Tigran I.
Журнал: Владикавказский математический журнал @vmj-ru
Статья в выпуске: 1 т.14, 2012 года.
Бесплатный доступ
We consider the problem of optimal recovery of a harmonic function in the unit ball from the inaccurate values of the radial integration operator. Information on the values of the operator is given as a function that differs from the exact values in the mean-square metric not more than a fixed error, either in the form of a finite set of Fourier coefficients calculated with a fixed error in the mean square or uniform metric.
Optimal recovery, harmonic function, computerized tomography
Короткий адрес: https://sciup.org/14318368
IDR: 14318368