Optimization of A-star search algorithm

Бесплатный доступ

Introduction. Autonomous mobile robots must be able to plan global and local motion paths. The A-star path planning algorithm allows us to calculate the shortest path between the starting and end points on a map with known static obstacles. In real conditions, when additional information about the area is entered (difficult or dangerous sections, areas with speed limits) and the cost of overcoming them is taken into account, A-star can lead to a non-optimal, for these conditions, solution of the problem. Aim. Consider options for optimizing the A-star path planning algorithm for use in various conditions with restrictions on the number of turns, linking to critical points on a map of the area, difficult and dangerous areas and аssess the quality of the optimization. Materials and methods. Research is carried out by computer simulation of the A-star algorithm and options for its optimization in the MATLAB environment. The criteria for evaluating the quality of optimization are focused primarily on computational time and the path optimality with respect to the selected parameters. Results. The results of path calculation performed using the A-star algorithm before and after optimization are presented. In both cases, the following are estimated and compared: calculation time, number of analyzed polygons, number of turns and path length. Conclusion. In most cases, the optimization of the algorithm increases the path length and calculation time, but not significantly. Moreover, the new path corresponds to the given conditions, is the shortest in these conditions and, therefore, is optimal. The considered optimization options allow you to calculate the path taking into account additional information, estimate the path length and computational time. On the basis of these evaluations, it is possible to choose path planning method suitable for individual scenario.

Еще

Path planning, a-star algorithm, motion path optimization, mobile robotic, path cost, model, алгоритм a-star

Короткий адрес: https://sciup.org/147232297

IDR: 147232297   |   DOI: 10.14529/ctcr200115

Список литературы Optimization of A-star search algorithm

  • Носков, В.П. Математические модели движения и системы технического зрения мобильных робототехнических комплексов: учеб. пособие / В.П. Носков, В.И. Рубцов, И.В. Рубцов. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2015. - 94 с.
  • Koenig, S. Lifelong planning A* / S. Koenig, M. Likhachev, D. Furcy // Artificial Intelligence. - 2004. - Vol. 155, no. 1. - P. 93-146. DOI: 10.1016/j.artint.2003.12.001
  • Килибарда, Г. Независимые системы автоматов в лабиринте / Г. Килибарда, В.Б. Кудрявцев, Ш. Ушчюмлич // Дискретная математика. - 2003. - Т. 15, вып. 2. - C. 3-39.
  • Максимова, Е.И. Сравнение качества результатов алгоритма "A-star" и его модификации для дорожной сети при выборе маршрута с учетом направления движения на перекрестке / Е.И. Максимова // Вестник науки Сибири. - 2014. - № 4. - C. 117-123.
  • Dan B. Marghitu. Mechanisms and Robots Analysis with MATLAB / Dan B. Marghitu. - Springer-Verlag London Limited, 2009. DOI: 10.1007/978-1-84800-391-0
  • Zeng, W. Finding shortest paths on real road networks: the case for A* / W. Zeng, R.L. Church // International Journal of Geographical Information Science. - 2009. - Vol. 23, no. 4. - P. 531-543.
  • DOI: 10.1080/13658810801949850
  • A novel potential field method for obstacle avoidance and path planning of mobile robot / T. Lei, D. Songyi, G. Gangxu, Zh. Kunli // 3-rd IEEE International Conference Computer Science and Information Technology. - 2010. - Vol. 9. - 6 p.
  • DOI: 10.1109/ICCSIT.2010.5565069
  • Principles of Robot Motion: Theory, Algorithms, and Implementations / H. Choset, K. Lynch, S. Hutchinson et al. - MIT Press, 2005. - 603 p.
  • Лю В. Методы планирования пути в среде с препятствиями (обзор) // Математика и математическое моделирование. - 2018. - № 1. - С. 15-58.
  • DOI: 10.24108/mathm.0118.0000098
  • Лавреновa, P.O. Планирование маршрута для беспилотного наземного робота с учетом множества критериев оптимизации / P.O. Лавреновa, И.М. Афанасьевa, Е.А. Магид // Результаты всероссийского научно-практического семинара "Беспилотные транспортные средства с элементами искусственного интеллекта". - 2015. - C. 10-20.
  • Kelly, Alonzo. Mobile Robotics. Mathematics, Models and Methods / Alonzo Kelly. - Cambridge university, 2013. - 716 p.
  • DOI: 10.1017/CBO9781139381284
  • Tzafestas, Spyros G. Introduction to Mobile Robot Control / Spyros G. Tzafestas. - School of Electrical and Computer Engineering National Technical University of Athens, 2014. - 691 p.
  • DOI: 10.1016/B978-0-12-417049-0.00004-3
  • Wallgrun J.O. Voronoi graph matching for robot localization and mapping / J.O. Wallgrun // Transactions on computational science IX. - Springer, 2010. - P. 76-108.
  • DOI: 10.1007/978-3-642-16007-3_4
  • Gonzalez, R. A Matlab-Based Interactive Simulator for Teaching Mobile Robotics / R. Gonzalez, C. Mahulea, M. Kloetzer // IEEE CASE'2015: Int. Conf. on Autom. Science and Engineering. - 2015, pp. 310-315.
  • DOI: 10.1109/CoASE.2015.7294097
  • Гольдштейн, А.Л. Оптимизация в среде MATLAB: учеб. пособие / А.Л. Гольдштейн. - Пермь: Изд-во Перм. нац. исследоват. политехн. ун-та, 2015. - 192 с.
Еще
Краткое сообщение