Optimizing QoS for Multimedia Services in Next Generation Network Based on ACO Algorithm

Автор: Dac-Nhuong Le

Журнал: International Journal of Information Technology and Computer Science(IJITCS) @ijitcs

Статья в выпуске: 10 Vol. 5, 2013 года.

Бесплатный доступ

In Next Generation Network (NGN), the backbone of the overall network architecture will be IP network, supporting different access network technologies and types of traffics. NGN will provide advanced services, such as Quality of Service (QoS) guarantees, to users and their applications. Factors affecting the QoS in NGN are speech encoders, delay, jitter, packet loss and echo. The negotiation and dynamic adaptation of QoS is currently considered to be one of the key features of the NGN concept. In this paper, I propose a novel Ant Colony Optimization algorithm to solve model of the optimal QoS for multimedia services in the NGN. Simulation results show that my new approach has achieved near optimal solutions. Comparison of experimental results with a recently researches shows that the proposed algorithm is better performance and it can meets the demand of the optimal QoS for multimedia services in NGN.

Еще

Quality of Service, Multimedia Services, QoS Matching, Next Generation Networks, Ant Colony Optimization

Короткий адрес: https://sciup.org/15011976

IDR: 15011976

Список литературы Optimizing QoS for Multimedia Services in Next Generation Network Based on ACO Algorithm

  • ITU-T Recommendation Y.2012. Functional requirements and architecture of the NGN release 1, 2006
  • 3GPP TS 23.228: IP Multimedia Subsystem (IMS); Stage 2, Release 8 2008
  • Ozcelebi, T., Radovanovic, R., Chaudron, M.: Enhancing End-to-End QoS for Multimedia Streaming in IMS-Based Networks. In: ICSNC, pp. 48–53, 2007.
  • Boula, L., Koumaras, H., Kourtis, A.: An Enhanced IMS Architecture Featuring Cross-Layer Monitoring and Adaptation Mechanisms. ICAS, Spain (2009)
  • IST DAIDALOS - EU FP6,http://www.ist-daidalos.org/
  • IST ENTHRONE - EU FP6,http://www.ist-enthrone.org/
  • Houssos, N., et al.: Advanced Adaptability and Profile Management Framework for the Support of Flexible Service Provision. IEEE Wireless Communications, pp.52–61, 2003.
  • Khan, S.: Quality Adaptation in a Multisession Multimedia System: Model, Algorithms and Architecture. PhD Thesis, Univ. of Victoria, 1998
  • Wang, Y., Kim, J.-G., Chang, S.-F., Kim, H.-M.: Utility-Based Video Adaptation for Universal Multimedia Access (UMA) and Content-Based Utility Function Prediction for Real-Time Video Transcoding. IEEE Trans. on Multimedia 9(2), pp.213–220, 2007
  • Guenkova-Luy, T., Kassler, A.J., Mandato, D.: End-to-End Quality-of-Service Coordination for Mobile Multimedia Applications. IEEE J. Selec. Areas Com-mun. 22(5), pp.889–903, 2004
  • Rosenberg, J., et al.: SIP: Session Initiation Protocol. IETF RFC 3261 2002.
  • Handley, H., Jacobson, V.: SDP: Session Description Protocol. IETF RFC 2327, 1998.
  • Khan, S.: Quality Adaptation in a Multisession Multimedia System: Model, Algorithms and Architecture. PhD Thesis, Univ. of Victoria, 1998.
  • Mukherjee, D., Delfosse, E., Kim, J.-G., Wang, Y.: Optimal Adaptation Decision-Taking for Terminal and Network Quality of Service. IEEE Trans. on Multime-dia 7(3), pp.454–462, 2005
  • Lea Skorin-Kapov, and Maja Matijasevic, Modeling of a QoS Matching and Optimization Function for Multimedia Services in the NGN, MMNS 2009, LNCS 5842, pp.55–68, 2009.
  • M. Dorigo, V. Maniezzo, and A. Colorni, Ant system: Optimization by a colony of cooperating agents, IEEE Trans. on System, MAN, and Cybernetics-Part B, vol. 26, pp. 29-41, 1996.
  • E. Rajo-Iglesias, O. Quevedo-Teruel, Linear Array Synthesis using an Ant Colony Optimization based Algorithm, IEEE Trans. on Antennas and Propagation, 2005.
  • M. Dorigo, M. Birattari, and T. Stitzle, Ant Colony Optimization: Arificial Ants as a Computational Intelligence Technique, IEEE computational intelligence magazine, November, 2006.
  • Leguizamon, G., Michalewicz, Z.: A new version of ant system for subset problems. In: Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on. Volume 2. 1999
  • Fidanova, S.: Aco algorithm for mkp using different heuristic information. Lecture Notes in Computer Science 2542, pp.438–444, 2003
  • Alaya, I., Solnon, C., Gh` edira, K.: Ant algorithm for the multi-dimensional knapsack problem. In: International Conference on Bioinspired Optimization Methods and their Applications (BIOMA 2004) pp.63–72, 2004.
  • Ji, J., Huang, Z., Liu, C., Liu, X., Zhong, N.: An Ant Colony Optimization Algorithm for Solving the Multidimensional Knap-sack Problems. In: Proceedings of the 2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology, IEEE Computer Society, pp.10–16, 2007.
  • Shahrear Iqbal, Md. Faizul Bari, Dr. M. Sohel Rahman, A novel ACO technique for Fast and Near Optimal Solutions for the Multi-dimensional Multi-choice Knapsack Problem, Proceedings of 13th International Conference on Computer and Information Technology (ICCIT 2010), Dhaka, Bangladesh, pp.33-38, 2010.
  • Stutzle, T., Hoos, H.H.: Max–min ant system. Future Generation Computer Systems16, pp.889–914, 2000.
  • Skorin-Kapov, L., Mosmondor, M., Dobrijevic, O., Matijasevic, M.: Application-level QoS Negotiation and Signaling for Advanced Multimedia Services in the IMS. IEEE Comm. Magazine 45(7), pp.108–116, 2007.
  • Dac-Nhuong Le, Optimizing Resource Allocation to Support QoS Requirements in Next Generation Networks using ACO Algorithm, International Journal of Computer Science and Information Technology & Security (IJCSITS), Vol.2, No.5, pp.931-938, 2012.
  • Dac-Nhuong Le, Optimizing the cMTS to Improve Quality of Service in Next Generation Networks based on ACO Algorithm, International Journal of Computer Network and Information Security (IJCNIS), Vol.5, No.4, 2013
  • Dac-Nhuong Le, PSO and ACO Algorithms Applied to optimal Resource Allocation to Support QoS Requirements in Next Generation Networks, International Journal of Information & Network Security (IJINS), Vol.2, No.3, pp.216-228, 2013.
  • Dac-Nhuong Le, PSO and ACO Algorithms Applied to Optimizing Location of Controllers in Wireless Networks, International Journal of Computer Science and Telecommunications, Vol.3 No.10, pp.1-7.
  • Dac-Nhuong Le, Nhu Gia Nguyen, and Vinh Trong Le, A Novel Ant Colony Optimization-based Algorithm for the Optimal Centralized Wireless Access Network, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (LNICST), Springer 2013.
Еще
Статья научная